
Improving Software Economics
Whitepaper
May 2009

Improving Software Economics

Walker Royce
Vice President, IBM Software Services , Rational

Top 10 Principles of Achieving Agility at Scale

From software development to software delivery
The world is becoming more dependent on software delivery efficiency and

world economies are becoming more dependent on producing software

with improved economic outcomes. What we have learned over decades of

advancing software development best practice is that software production

involves more of an economics than an engineering discipline. This paper

provides a provocative perspective on achieving agile software delivery and

the economic foundations of modern best practices.

Improvement in software lifecycle models and software best practices has

been a long slog that accelerated in the 1980s as the engineering roots of

software management methods continued to fail in delivering acceptable

software project performance. IBM’s Rational team has partnered with

hundreds of software organizations and participated in thousands of

software projects over the last twenty-five years. Our mission has been

twofold: first, to bring software best practices to our customers, and second,

to participate directly on their diverse projects to learn the patterns of

success and failure so that we could differentiate which practices were best,

and why. The Rational team didn’t invent iterative development, object-

oriented design, UML, agile methods, or the best practices captured in the

IBM® Rational® Unified Process. The industry evolved these techniques,

and we built a business out of synthesizing the industry’s experience and

packaging lessons learned into modern processes, methods, tools, and

training. This paper provides a short history of this transition by looking at

the evolution of our management principles. It presents our view of the Top

10 principles in managing an industrial-strength software organization and

achieving agility at any scale of business challenge.

Most organizations that depend on software are struggling to transform their

lifecycle model from a development focus to a delivery focus. This subtle

distinction in wording represents a dramatic change in the principles that are

driving the management philosophy and the governance models. Namely, a

“software development” orientation focuses on the various activities required

in the development process, while a “software delivery” orientation focuses

on the results of that process. Organizations that have successfully made this

transition — perhaps thirty to forty percent by our estimate — have recognized

that engineering discipline is trumped by economics discipline in most software-

intensive endeavors.

 2 From software development to

 software delivery

 7 The move to agility

13 Top 10 Principles of Conventional

 Software Management

15 Top 10 Principles of Interative

	 Software Managememt

20 Reducing uncertainity : the basis

 of best practice

24 Achieving “Agility at Scale”: Top

 10 principles of agile software

 delivery

29 A framework for reasoning about

 improving software economics

35 Conclusion

Contents

Improving Software Economics
Page 2

Improving Software Economics
Page 3

Table 1: Differentiating conventional engineering governance from economically driven governance

Table 1 provides a few differentiating indicators of successfully making the trans-

formation from conventional engineering governance to more economically driven

governance.

Improving Software Economics
Page 4

Success rates in applying engineering governance (a.k.a. waterfall model

management) have been very low; most industry studies assess the success

rate at ten to twenty percent. Where waterfall model projects do succeed,

one usually finds that the project has been managed with two sets of books.

The front-office books satisfy the external stakeholders that the engineering

governance model is being followed and the back-office books, where

more agile techniques are employed with economic governance, satisfy the

development team that they can predictably deliver results in the face of the

uncertainties. The results of the back-office work gets fed back to meet the

deliverables and milestones required for the front-office books. “Managing

two sets of books” has been expensive, but it is frequently the only way for

developers to deliver a satisfactory product while adhering to the stakeholder

demand for engineering governance.

Advanced organizations have transitioned to more efficiently managing only

one set of honest plans, measures, and outcomes. Most organizations still

manage some mixture of engineering governance and economic governance to

succeed.

Let’s take a minute to think about engineering vs. economics governance

— i.e., precise up-front planning vs. continual course correction toward

a target goal — in terms even those outside the software industry can

relate to. This may be a thought-provoking hypothesis: Software project

managers are more likely to succeed if they use techniques similar to

those used in movie production, compared to those used conventional

engineering projects, like bridge construction.1,2 Consider this:

Most software professionals have no laws of physics, or properties of •	

materials, to constrain their problems or solutions. They are bound

only by human imagination, economic constraints, and platform

performance once they get something executable.

Quality metrics for software products have few accepted atomic units. •	

With the possible exception of reliability, most aspects of quality are

very subjective, such as responsiveness, maintainability and usability.

Quality is best measured through the eyes of the audience.

Highlights

Software project managers are

more likely to succeed if they use

techniques similar to those used

in movie production, compared to

those used conventional engineering

projects.

Improving Software Economics
Page 5

In a software project, you can seemingly change almost anything at •	

any time: plans, people, funding, requirements, designs, and tests.

Requirements — probably the most misused word in our industry —

rarely describe anything that is truly required. Nearly everything is

negotiable.

These three observations are equally applicable to software project

managers and movie producers. These are professionals that regularly

create a unique and complex web of intellectual property bounded only

by a vision and human creativity. Both industries experience a very low

success rate relative to mature engineering enterprises.

The last point above is worth a deeper look. The best thing about

software is that it is soft (i.e., relatively easy to change) but this is also its

riskiest attribute. In most systems, the software is where we try to capture

and anticipate human behavior, including abstractions and business

rules. Most software does not deal with natural phenomena where laws

of physics or materials provide a well-understood framework. Hence,

most software is constrained only by human imagination; the quality of

software is judged more like a beauty contest than by precise mathematics

and physical tolerances. If we don’t carefully manage software production,

we can lull ourselves into malignant cycles of change that result in

massive amounts of scrap, rework, and wasted resources.

With the changeability of software being its greatest asset and greatest

risk, it is imperative that we measure software change costs and qualities

and understand the trends therein. The measure of scrap and rework is

an economic concern that has long been understood as a costly variable

in traditional engineering, as in the construction industry. While in the

software industry we commonly blow up a product late in the lifecycle and

incur tremendous scrap and rework to rebuild its architecture, we rarely

do this in the construction industry. The costs are so tangibly large,

and the economic ramifications are dire. In software, we need to get an

equally tangible understanding of the probable economic outcomes.

The best thing about software is

that it is soft (i.e., relatively easy to

change) but this is also its riskiest

attribute.

Highlights

Improving Software Economics
Page 6

Highlights

For most products, systems, and

services, you want to standardize

where you can and not reinvent.

A lesson that the construction industry learned long ago was to

eliminate the risk of reinventing the laws of construction on every

project. Consequently, they enforced standards in building codes,

materials, and techniques, particularly for the architectural engineering

aspects of structure, power, plumbing, and foundation. This resulted

in much more straightforward (i.e., predictable) construction with

innovation mostly confined to the design touches sensed by its human

users. This led to guided economic governance for the design/style/

usability aspects with standardization and engineering governance

driving most of the architecture, materials, and labor. When we innovate

during the course of planned construction projects with new materials,

new technology, or significant architectural deviations, it leads to the

same sorts of overruns and rework that we see in software projects. For

most products, systems, and services, you want to standardize where you

can and not reinvent.

Economic discipline and governance is needed to measure the risk and vari-

ance of the uncertain outcomes associated with innovation. Most software

organizations undertake a new software project by permitting their most

trusted craftsmen to reinvent software capabilities over and over. Each project

and each line of business defend the reasons why their application is differ-

ent, thereby requiring a custom solution without being precise about what

is different. Encumbered with more custom developed architectures and com-

ponents than reused ones, they end up falling back on the waterfall model,

which is easy to understand. But this approach is demonstrably too simplistic

for uncertain endeavors like software.

The software industry has characterized new and improved software lifecycle

models using many different terms, such as: spiral development, incremen-

tal development, evolutionary development, iterative development, and agile

development. In spirit, these models have many things in common, and, as a

class, they represent a common theme: anti-waterfall development. However,

after 20-30 years of improvement and transition, the waterfall model mindset

is still the predominant governance process in most industrial-strength soft-

ware development organizations. By my estimation, more than half of the soft-

ware projects in our industry still govern with a waterfall process, particularly

organizations with mature processes. Perhaps geriatric could be used as an

explicit level of process maturity, one that should be recognized in software

Improving Software Economics
Page 7

maturity models to help organizations identify when their process has become

too mature and in need of a major overhaul.

The move to agility

We have learned many best practices as we evolved toward modern agile

delivery methods. Most of them we discovered years ago as we worked

with forward-looking organizations. At IBM, we have been advancing

techniques largely from the perspective of industrial strength software

engineering, where scale and criticality of applications dominate our

governance and management methods. We were one of the pioneers of

agile techniques like pair programming3 and extreme programming,4

and IBM now has a vibrant technical community with thousands of

practitioners engaged in agile practices in our own development efforts

and our professional services. Many pioneering teams inside and outside

of IBM have advanced these best practices from smaller scale techniques,

commonly referred to as “agile methods,” and these contributions were

developed separately in numerous instances across the diverse spectrum

of software domains, scales, and applications.

For years, we have worked to unite the agile consultants (i.e., small

scale development camps) with the process maturity consultants (i.e.,

industrial strength software development camps). While these camps

have been somewhat adversarial and wary of endorsing one another, both

sides have valid techniques and a common spirit, but approach common

problems with a different jargon and bias. There is no clear right or

wrong prescription for the range of solutions needed. Context and scale

are important, and every nontrivial project or organization needs a mix

of techniques, a family of process variants, common sense, and domain

experience to be successful.

Many pioneering teams inside and outside of IBM have advanced these

best practices from smaller scale techniques, commonly referred to as

“agile methods,” and these contributions were developed separately in

numerous instances across the diverse spectrum of software domains,

scales, and applications.

Highlights

We have learned many best practices

as we evolved toward modern agile

delivery methods. Most of them we

discovered years ago as we worked

with forward-looking organizations.

Improving Software Economics
Page 8

Highlights

Progress correlates to tangible

intermediate outcomes, and is

best measured through executable

demonstrations.

For years, we have worked to unite the agile consultants (i.e., small scale

development camps) with the process maturity consultants (i.e., industrial

strength software development camps). While these camps have been

somewhat adversarial and wary of endorsing one another, both sides have

valid techniques and a common spirit, but approach common problems with

a different jargon and bias. There is no clear right or wrong prescription for

the range of solutions needed. Context and scale are important, and every

nontrivial project or organization needs a mix of techniques, a family of

process variants, common sense, and domain experience to be successful.

In Software Project Management,5 I introduced my Top 10 Principles

of managing a modern software process. I will use that framework to

summarize the history of best-practice evolution. The sections that follow

describe three discrete eras of software lifecycle models by capturing the

evolution of their top 10 principles. I will denote these three stages as:

1) conventional waterfall development

2) transitional iterative development

3) modern agile delivery

I will only describe the first two eras briefly since they have been covered

elsewhere in greater detail and their description here is only to provide

benchmarks for comparison to the top 10 principles of a modern agile

delivery approach.

Figure 1 provides a project manager’s view of the process transition that the

industry has been marching toward for decades. Project profiles representing

each of the three eras plot development progress versus time, where progress

is defined as percent executable—that is, demonstrable in its target form.

Progress in this sense correlates to tangible intermediate outcomes, and is

best measured through executable demonstrations. The term “executable”

does not imply complete, compliant, nor up to specifications; but it does

imply that the software is testable. The figure also describes the primary

measures that were used to govern projects in these eras and introduces the

measures that we find to be most important moving forward to achieve agile

software delivery success.

Improving Software Economics
Page 9

Early success via paper designs and overly precise artifacts, 1.	

Commitment to executable code late in the life cycle, 2.	

Integration nightmares due to unforeseen implementation issues 3.	

and interface ambiguities,

Heavy budget and schedule pressure to get the system working, 4.	

Late shoe-horning of suboptimal fixes, with no time for redesign, 5.	

and

A very fragile, expensive-to-maintain product, delivered late.6.	

Conventional waterfall projects are represented by the dotted line profile in

Figure 1. The typical sequence for the conventional waterfall management

style when measured this way is:

 Improving Software Economics
 Page 10

Excessive
scrap and rework

D
ev

el
op

m
en

t P
ro

gr
es

s
(%

 c
od

ed
)

100%

Project Schedule

Conventional
Project Profile

Iterative
Project Profile

Agile delivery
Project Profile

Agile software delivery
Reuse, SOA, EA

Collaborative environments

Iterative development
Middleware components
Mature commercial tools

Waterfall governance
Custom development

Proprietary tools/methods

Agile Econometrics Iterative Trends Waterfall measures
Accurate net present value Honest earned value Dishonest earned values

Reuse/custom asset trends Release content over time Activity/milestone completion

Release quality over time Release quality over time Code/test production

Variance in estimate to complete Prioritized risk management Requirements-design-code traceability

Release content/quality over time Scrap/rework/defect trends Inspection coverage

Actuals vs dynamic plans Actuals vs dynamic plans Actuals vs static plan

Figure 1: Improved project profiles and measures in transitioning to agile delivery processes

Improving Software Economics
Page 11

Most waterfall projects are mired in inefficient integration and late

discovery of substantial design issues, and they expend roughly 40

percent or more of their total resources in integration and test activities,

with much of this effort consumed in excessive scrap and rework during

the late stages of the planned project, when project management had

imagined shipping or deploying the software. Project management

typically reports a linear progression of earned value up to 90 percent

complete before reporting a major increase in the estimated cost of

completion as they suffer through the late scrap and rework.

In retrospect, software earned value systems based on conventional

activity, document, and milestone completion are not credible since

they ignore the uncertainties inherent in the completed work. Here is

a situation for which I have never seen a counter-example: A software

project that has a consistently increasing progress profile is certain to

have a pending cataclysmic regression.

The iterative management approach represented by the middle profile in

Figure 1 forces integration into the design phase through a progression

of demonstrable releases, thereby exposing the architecturally significant

uncertainties to be addressed earlier where they can be resolved

efficiently in the context of lifecycle goals. Equally as critical to the

process improvements are a greater reliance on more standardized

architectures and reuse of operating systems, data management systems,

graphical user interfaces, networking protocols, and other middleware.

This reuse and architectural conformity contributes significantly to

reducing uncertainty through less custom development and precedent

patterns of construction. The downstream scrap and rework tarpit

is avoidable, along with late patches and malignant software fixes.

The result is a more robust and maintainable product delivered more

predictably with a higher probability of economic success. Iterative

projects can deliver a product with about half the scrap and rework

activities as waterfall projects by re-factoring architecturally significant

changes far earlier in the lifecycle.

Agile software delivery approaches start projects with an ever increasing

amount of the product coming from existing assets, architectures, and

services, as represented in the left hand profile. Integrating modern best

Highlights

A software project that has a

consistently increasing progress

profile is certain to have a pending

cataclysmic regression.

practices and a supporting platform that enables advanced collaboration

allows the team to iterate more effectively and efficiently. Measurable

progress and quality are accelerated and projects can converge on

deliverable products that can be released to users and testers earlier. Agile

delivery projects that have fully transitioned to a steering leadership style

based on effective measurement can optimize scope, design, and plans

to reduce this waste of unnecessary scrap and rework further, eliminate

uncertainties earlier, and significantly improve the probability of win-win

outcomes for all stakeholders.

Note that we don’t expect scrap and rework rates to be driven to zero, but

rather to a level that corresponds to healthy discovery, experimentation,

and production levels commensurate with resolving the uncertainty of the

product being developed.

Table 2 provides one indicative benchmark of this transition. The resource

expenditure trends become more balanced across the primary workflows of

a software project as a result of less human-generated stuff, more efficient

processes (less scrap and rework), more efficient people (more creative

work, less overhead), and more automation.

Table 2: Resource expenditure profiles in transitioning to agile delivery processes

Improving Software Economics
Page 12

Improving Software Economics
Page 13

Highlights Top 10 Principles of Conventional Software Management
Most software engineering references present the waterfall model6 as the

source of the “conventional” software management process, and I use

these terms interchangeably. Years ago, I asserted the top 10 principles

of the conventional software process to capture its spirit and provide a

benchmark for comparison with modern methods.

The interpretation of these principles and their order of importance

are judgments that I made based on experiences from hundreds of

project evaluations, project diagnoses performed by the Rational team,

and discussions with Winston Royce, one of the pioneers in software

management processes. My father is well-known for his work on the

waterfall model, but he was always more passionate about iterative and

agile techniques well before they became popular.7

Top 10 Management Principles of Waterfall Development

Freeze requirements before design.1.	

Forbid coding prior to detailed design review.2.	

Use a higher order programming language.3.	

Complete unit testing before integration.4.	

Maintain detailed traceability among all artifacts.5.	

Thoroughly document each stage of the design.6.	

Assess quality with an independent team.7.	

Inspect everything.8.	

Plan everything early with high fidelity.9.	

Control source code baselines rigorously.10.	

Conventional software management techniques typically follow a

sequential transition from requirements to design to code to test

with extensive paper-based artifacts that attempt to capture complete

intermediate representations at every stage. Requirements are first

captured in complete detail in ad hoc text and then design documents

are fully elaborated in ad hoc notations. After coding and unit testing

individual code units, they are integrated together into a complete system.

Table 2: Resource expenditure profiles in transitioning to agile delivery processes

Improving Software Economics
Page 14

This integration activity is the first time that significant inconsistencies

among components (their interfaces and behavior) can be tangibly

exposed, and many of them are extremely difficult to resolve. Integration

— getting the software to operate reliably enough to test its usefulness

— almost always takes much longer than planned. Budget and schedule

pressures drive teams to shoehorn in the quickest fixes. Re-factoring the

design or reconsideration of requirements is usually out of the question.

Testing of system threads, operational usefulness, and requirements

compliance gets performed through a series of releases until the software

is judged adequate for the user. More than 80 percent of the time, the end

result is a late, over-budget, fragile, and expensive-to-maintain software

system.

Hindsight from thousands of software project post-mortems has

revealed a common symptom of governing a software project with an

engineering management style: the project’s integration and test activities

require an excessive expenditure of resources in time and effort. This

excessive rework is predominantly a result of postponing the resolution

of architecturally significant issues (i.e., resolving the more serious

requirements and design uncertainties) until the integration and test

phase. We observed that better performing projects would be completed

with about 40 percent of their effort spent in integration and test.

Unsuccessful projects spent even more. With less than one in five projects

succeeding, better governance methods were imperative.

One of the most common failure patterns in the software industry is to

develop a five-digits-of-precision version of a requirement specification (or

plan) when you have only a one-digit-of-precision understanding of the

problem. A prolonged effort to build precise requirements or a detailed

plan only delays a more thorough understanding of the architecturally

significant issues — that is, the essential structure of a system and

its primary behaviors, interfaces, and design trade-offs. How many

frighteningly thick requirements documents or highly precise plans (i.e.,

inchstones rather than milestones) have you worked on, perfected, and

painstakingly reviewed, only to completely overhaul these documents

months later?

The single most important lesson learned in managing software projects

With less than one in five projects

succeeding, better governance

methods were imperative.

A prolonged effort to build precise

requirements or a detailed plan

only delays a more thorough

understanding of the architecturally

significant issues.

Highlights

Improving Software Economics
Page 15

Highlights with the waterfall model was that software projects contain much more

uncertainty than can be accommodated with an engineering governance

approach. This traditional approach presumes well-understood requirements

and straightforward production activities based on mature engineering

precedent.

Top 10 Principles of Iterative Software Management
In the 1990s, Rational Software Corporation began evolving a modern process

framework to more formally capture the best practices of iterative development.

The primary goal was to help the industry transition from a “plan and track”

management style (the waterfall model) to a “steering” leadership style that admit-

ted uncertainties in the requirements, design, and plans.

The software management approach we evolved led to producing the architecture

first, then usable increments of partial capability, then you worry about complete-

ness. Requirements and design flaws are detected and resolved earlier in the life

cycle, avoiding the big-bang integration at the end of a project by integrating in

stages throughout the project life cycle. Modern, iterative development enables

better insight into quality because system characteristics that are largely inherent

in the architecture (e.g., performance, fault tolerance, adaptability, interoperability,

maintainability) are tangible earlier in the process where issues are still correct-

able without jeopardizing target costs and schedules. These techniques attacked

major uncertainties far earlier and more effectively. Here are my top 10 principles

of iterative development from the 1990s and early 2000s era:

Top 10 Management Principles of Iterative Development

Base the process on an architecture-first approach.1.	

Establish an iterative lifecycle process that confronts risk early.2.	

Transition design methods to emphasize component-based development.3.	

Establish a change management environment.4.	

Enhance change freedom through tools that support round-trip engineering. 5.	

Capture design artifacts in rigorous, model-based notation. 6.	

Instrument the process for objective quality control and progress assessment. 7.	

Use a demonstration-based approach to assess intermediate artifacts.8.	

Plan intermediate releases in groups of usage scenarios with evolving levels 9.	

of detail.

Establish a configurable process that is economically scalable.10.	

Modern, iterative development

enables better insight into quality,

because system characteristics

that are largely inherent in the

architecture are tangible earlier in

the process where issues are still

correctable.

Improving Software Economics
Page 16

Whereas conventional principles drove software development activities to

overexpend in integration activities, these modern principles resulted in less

total scrap and rework through relatively more emphasis in early lifecycle

engineering and a more balanced expenditure of resources across the core

workflows of a modern process.

The architecture-first approach forces integration into the design phase,

where the most significant uncertainties can be exposed and resolved. The

early demonstrations do not eliminate the design breakage; they just make

it happen when it can be addressed effectively. The downstream scrap and

rework is significantly reduced along with late patches and sub-optimal

software fixes, resulting in a more robust and maintainable design.

Interim milestones provide tangible results. Designs are now “guilty until

proven innocent.” The project does not move forward until the objectives

of the demonstration have been achieved. This does not preclude the

renegotiation of objectives once the milestone results permit further

refactoring and understanding of the tradeoffs inherent in the requirements,

design, and plans.

Figure 2 illustrates the change in measurement mindset when moving from

waterfall model measures of activities to iterative measures of scrap and

rework trends in executable releases. The trends in cost of change9 can

be observed through measuring the complexity of change This requires a

project to quantify the rework (effort required for resolution) and number

of instances of rework. In simple terms, adaptability quantifies the ease of

changing a software baseline, with a lower value being better. When changes

are easy to implement, a project is more likely to increase the number of

changes, thereby increasing quality. With the conventional process and

custom architectures, change was more expensive to incorporate as we

proceeded later into the life cycle. For waterfall projects that measured such

trends, they tended to see the cost of change increase as they transitioned

from testing individual units of software to testing the larger, integrated

system.

Early demonstrations do not

eliminate the design breakage;

they just make it happen when it

can be addressed effectively.

Highlights

Improving Software Economics
Page 17

Highlights This is intuitively easy to understand, since unit changes (typically

implementation issues or coding errors) were relatively easy to debug

and resolve and integration changes (design issues, interface errors or

performance issues) were relatively complicated to resolve.

A discriminating result of a successful transition to a modern iterative

process with an architecture first approach is that the more expensive

changes are discovered earlier when they can be efficiently resolved and

get simpler and more predictable as we progress later into the life cycle.

This is the result of attacking the uncertainties in architecturally

significant requirements tradeoffs and design decisions earlier. The

big change in an iterative approach is that integration activities mostly

precede unit test activities, thereby resolving the riskier architectural and

design challenges prior to investing in unit test coverage and complete

implementations. This is the single most important measure of software

project health. If you have a good architecture and an efficient process,

the long-accepted adage, “The later you are in the life cycle, the more

expensive things are to fix,” does NOT apply.10

Successful steering in iterative development is based on improved

measurement and metrics extracted directly from the evolving sequence

of executable releases. These measures, and the focus on building the

architecture first, allow the team to explicitly assess trends in progress

and quality and systematically address the primary sources of uncertainty.

The absolute measures are useful, but the relative measures (or trends) of

how progress and quality change over time are the real discriminators in

improved steering, governance, and predictability.

In an architecture first approach,

more expensive changes are

discovered earlier when they can

be efficiently resolved and get

simpler and more predictable as we

progress later into the life cycle.

 Improving Software Economics
 Page 18

Maintenance
changes

D
em

on
st

ra
bl

e
Pr

og
re

ss

Measured software release changes

D
em

on
st

ra
bl

e
Pr

og
re

ss

Late scrap and
rework

Design
Changes

Implementation
Changes

Scrap/rework costs for project releases over time

Maintenance
changes

Integration
Changes

Unit test
Changes

Scrap/rework costs for project releases over time

40

30

20

10

Continuous integration and a
sound architecture results in
change cost reductions over
time

Late integration
results in escalating
change costs

H
ou

rs
/c

ha
ng

e

Software test releases Demo releases Software test releases

Waterfall Baseline Change Profile Iterative/Agile Baseline Change Profile

Figure 2: The discriminating improvement measure: change cost trends

Balancing innovation with standardization is critical to governing the

cost of iterating, as well as governing the extent to which you can reuse

assets versus developing more custom components. Standardization

through reuse can take on many forms including:

Product assets: architectures, patterns, services, applications, models, •	

commercial components, legacy systems, legacy components

Process assets: methods, processes, practices, measures, plans, •	

estimation models, artifact templates

People assets: existing staff skills, partners, roles, ramp-up plans, •	

training

Platform assets: schemas, commercial tools, custom tools, data sets, •	

tool integrations, scripts, portals, test suites, metrics experience

databases

While this paper is primarily concerned with the practice of reducing

uncertainty, there is an equally important practice of reusing assets

based on standardization. The value of standardizing and reusing

existing architectural patterns, components, data, and services lies in the

reduction in uncertainty that comes from using elements whose function,

behavior, constraints, performance, and quality are all known.

The cost of standardizing and reuse is that it can constrain innovation. It

is therefore important to balance innovation and standardization, which

requires emphasis on economic governance to reduce uncertainty; but

that practice is outside the scope of this paper.

The value of standardizing and

reusing existing architectural

patterns, components, data, and

services lies in the reduction in

uncertainty that comes from using

elements whose function, behavior,

constraints, performance, and quality

are all known.

Improving Software Economics
Page 19

Highlights

Reducing uncertainity: The basis of best practice
The top 10 principles of iterative development resulted in many best practices,

which are documented in the Rational Unified Process.11 The Rational Unified

Process includes practices for requirements management, project management,

change management, architecture, design and construction, quality management,

documentation, metrics, defect tracking, and many more. These best practices

are also context dependent. For example, a specific best practice used by a small

research and development team at an ISV is not necessarily a best practice for an

embedded application built to military standards. After several years of deploying

these principles and capturing a framework of best practices, we began to ask a

simple question: “Why are these best? And what makes them better?”

IBM research and the IBM Rational organization have been analyzing

these questions for over a decade, and we have concluded that reducing

uncertainty is THE recurring theme that ties together techniques that we

call best practices. Here is a simple story that Murray Cantor composed to

illustrate this conclusion.

Suppose you are the assigned project manager for a software product that

your organization needs to be delivered in 12 months to satisfy a critical

business need. You analyze the project scope and develop an initial plan

and mobilize the project resources estimated by your team. They come back

after running their empirical cost/schedule estimation models and tell you

that the project should take 11 months. Excellent! What do you do with

that information? As a savvy and scarred software manager, you know that

the model’s output is just a point estimate and simply the expected value

of a more complex random variable, and you would like to understand the

variability among all the input parameters and see the full distribution of

possible outcomes. You want to go into this project with a 95 percent chance

of delivering within 12 months. Your team comes back and shows you the

complete distribution illustrated as the “baseline estimate” at the top of

Figure 3. I’ll describe the three options shown in a moment.

Highlights

Reducing uncertainty is the

recurring theme that ties together

techniques that we call best

practices.

Improving Software Economics
Page 20

 Improving Software Economics
 Page 21

0 12 months

0 15 months

12 months

0 12 months

0

Baseline estimate

Option 1: Expand schedule

Option 2: Reduce scope

Option 3: Reduce variance
Eliminate sources of uncertainty

Figure 3: A baseline estimate and alternatives in dealing with project management

constraints.

Examining the baseline estimate, you realize that about half of the

outcomes will take longer than 12 months and you have only about a 50

percent chance of delivering on time. The reason for this dispersion is the

significant uncertainty in the various input parameters reflecting your

team’s lack of knowledge about the scope, the design, the plan, and the

team capability. Consequently, the variance of the distribution is rather

wide.12

Now, as a project manager there are essentially three paths that you can

take; these are also depicted in Figure 3:

Option 1: Ask the business to move out the target delivery date to 15 1.	

months to ensure that 95 percent of the outcomes complete in less

time than that.

Option 2: Ask the business to re-scope the work, eliminating some 2.	

of the required features or backing off on quality so that the median

schedule estimate moves up by a couple of months. This ensures that

95 percent of the outcomes complete in 12 months.

Option 3: This is the usual place we all end up and the project 3.	

managers that succeed work with their team to shrink the variance

of the distribution. You must address and reduce the uncertainties

in the scope, the design, the plans, the team, the platform, and the

process. The effect of eliminating uncertainty is less dispersion in

the distribution and consequently a higher probability of delivering

within the target date.

The first two options are usually deemed unacceptable, leaving the

third option as the only alternative — and the foundation of most of

the iterative and agile delivery best practices that have evolved in the

software industry. If you examine the best practices for requirements

management, use case modeling, architectural modeling, automated code

production, change management, test management, project management,

architectural patterns, reuse, and team collaboration, you will find

methods and techniques to reduce uncertainty earlier in the life cycle. If

we retrospectively examine my top 10 principles of iterative development,

one can easily conclude that many of them (specifically 1, 2, 3, 6, 8, and

9) make a significant contribution to addressing uncertainties earlier. The

others (4, 5, 7 and 10) are more concerned with establishing feedback

control environments for measurement and reporting.

Highlights

You must address and reduce the

uncertainties in the scope, the

design, the plans, the team, the

platform, and the process.

Improving Software Economics
Page 22

Improving Software Economics
Page 23

Highlights It was not obvious to me that the purpose of these principles was also to

reduce uncertainty until I read Douglass Hubbard’s book How to Measure
Anything,13 where I rediscovered the following definition:

Measurement: A set of observations that reduce uncertainty where the

result is expressed as a quantity.

Voila! The scientific community does not look at measurement as completely

eliminating uncertainty. Any significant reduction in uncertainty is

enough to make a measurement valuable. With that context, I concluded

that the primary discriminator of software delivery best practices was that

they effectively reduce uncertainty and thereby increase the probability

of success—even if success is defined as cancelling a project earlier so

that wasted cost was minimized. What remains to be assessed are how

much better these practices work in various domains and how do we best

instrument them. IBM research continues to invest in these important

questions.

The scientific community does not

look at measurement as completely

eliminating uncertainty. Any

significant reduction in uncertainty

is enough to make a measurement

valuable.

Highlights

Successfully delivering software

products in a predictable and

profitable manner requires an

evolving mixture of discovery,

production, assessment, and a

steering leadership style.

Achieving “Agility at Scale: Top 10 principles of Agile software delivery
After ten years of experience with iterative development projects, we have

experience from 100s of projects to update our management principles. The

transitional mix of disciplines promoted in iterative development needs to

be updated to the more advanced economic disciplines of agile software

delivery. What follows is my proposed top ten principles for achieving agile

software delivery success.

Top 10 Management Principles of Agile Software Delivery

Reduce uncertainties by addressing architecturally significant decisions 1.	

first.

Establish an adaptive lifecycle process that accelerates variance 2.	

reduction.

Reduce the amount of custom development through asset reuse and 3.	

middleware.

Instrument the process to measure cost of change, quality trends, and 4.	

progress trends.

Communicate honest progressions and digressions with all stakeholders5.	

Collaborate regularly with stakeholders to renegotiate priorities, 		 6.	

scope, resources, and plans.

Continuously integrate releases and test usage scenarios with 		 7.	

evolving breadth and depth.

Establish a collaboration platform that enhances teamwork among 	8.	

potentially distributed teams.

Enhance the freedom to change plans, scope and code releases 		9.	

through automation.

Establish a governance model that guarantees creative freedoms to 	10.	

practitioners.

Successfully delivering software products in a predictable and profitable

manner requires an evolving mixture of discovery, production, assessment,

and a steering leadership style. The word “steering” implies active

management involvement and frequent course-correction to produce better

results. All stakeholders must collaborate to converge on moving targets,

and the principles above delineate the economic foundations necessary to

achieve good steering mechanisms.

Improving Software Economics
Page 24

 Improving Software Economics
 Page 25

Three important conclusions that can be derived from these principles and

practical experience are illustrated in Figure 4.

An estimated target release date is not a point in time, it is a probability distribution

0 6 12

Scope is not a requirements document, it is a continuous negotiation

Coarse
vision

Architecturally significant
evaluation criteria

Primary test
cases

Complete acceptance test
and regression test suite

Actual path and precision of Scope/Plan

Uncertainty in
Stakeholder

Satisfaction Space

Initial state

Initial plan

A plan is not a prescription, it is an evolving, moving target

Figure 4: The governance of Agile software delivery means managing uncertainty

and variance through steering

In a healthy software project, each phase of development produces an increased

level of understanding in the evolving plans, specifications, and completed

solution, because each phase furthers a sequence of executable capabilities and

the team’s knowledge of competing objectives. At any point in the life cycle, the

precision of the subordinate artifacts should be in balance with the evolving

precision in understanding, at compatible levels of detail and reasonably traceable

to each other.

The difference between precision and accuracy in the context of software

management is not trivial. Software management is full of gray areas,

situation dependencies, and ambiguous tradeoffs. Understanding the

difference between precision and accuracy is a fundamental skill of good

software managers, who must accurately forecast estimates, risks, and

the effects of change. Precision implies repeatability or elimination of

uncertainty. Unjustified precision — in requirements or plans — has proved

to be a substantial yet subtle recurring obstacle to success. Most of the time,

this early precision is just plain dishonest and serves to provide a counter-

productive façade for portraying illusory progress and quality. Unfortunately,

many sponsors and stakeholders demand this early precision and detail

because it gives them (false) comfort of the progress achieved.

Iterative development processes have evolved into more successful agile

delivery processes by improving the navigation through uncertainty

with balanced precision. This steering requires dynamic controls and

intermediate checkpoints, whereby stakeholders can assess what they

have achieved so far, what perturbations they should make to the target

objectives, and how to re-factor what they have achieved to adjust and

deliver those targets in the most economical way. The key outcome of these

modern agile delivery principles is increased flexibility, which enables the

continuous negotiation of scope, plans, and solutions for effective economic

governance.

Figure 5 provides another example of this important metric pattern. What

this figure illustrates is the tangible evolution of a quality metric (in

this case, the demonstrated mean time between failure for the software

embedded in a large scale command and control system).14

Improving Software Economics
Page 26

Highlights

The key outcome of these

modern agile delivery principles

is increased flexibility, which

enables the continuous

negotiation of scope, plans, and

solutions for effective economic

governance.

 Improving Software Economics
 Page 27

Whereas, the conventional process would have to deal speculatively with

this critical performance requirement for most of the lifecycle, the project

that employs a modern agile delivery approach eliminates the uncertainty

in achieving this requirement early enough in the project’s schedule that

the team can effectively trade-off remaining resources to invest in more

run-time performance, added functionality, or improved profit on system

delivery. This sort of reduction in uncertainty has significant economic

leverage to all stakeholders.

Software
MTBF allocation

Demonstrated MTBF

Requirements negotiation
Design refactoring

Late quality and performance insight
constrains flexibility to make tradeoffs

Continuous quality and performance insight allows
flexibility in trading off cost, quality, and features

• Speculative quality requirements

• Unpredictable cost/schedule performance

• Late shoehorning of suboptimal changes
that impact quality

• Delays risk and uncertainty reduction until
too late in the project life cycle

• Release qualities that matter

• Quality progressions/digressions

• Early requirement verification
and/or negotiation

• Reduces critical sources of variance in
cost to complete

• Increased flexibility in late resource
investments

AGILE DELIVERYWATERFALL DEVELOPMENT

Requirements/Design
Baseline and freeze

First indications
of performance

challenges

Indications
of other quality

challenges

Measured
progress

and quality

Figure 5: Reduced uncertainty in critical quality requirements improves the variance

in the cost to complete and adds flexibility in downstream resource investments.

Improving Software Economics
Page 28

I have observed four discriminating patterns that are characteristic of

successful agile delivery projects. These patterns represent a few “abstract

gauges” that help the steering process to assess scope management,

process management, progress management, and quality management. My

hunch is that most project managers certified in traditional engineering

project management will react negatively to these notions, because they

run somewhat counter to conventional wisdom.

Scope evolves: Solutions evolve from stakeholder needs, and 1.	

stakeholder needs evolve from available solutions assets. [Anti-pattern:

Get all the requirements right up front.] This equal and opposite

interaction between user need and solution is the engine for iteration

that is driving more and more asset-based development. We just don’t

build many applications dominated by custom code development

anymore. A vision statement evolves into interim evaluation criteria

which evolve into test cases and finally detailed acceptance criteria.

Scope evolves from abstract and accurate representations into precise

and detailed representations as stakeholder understanding evolves

(i.e., uncertainty is reduced).

Process rigor evolves: Process and instrumentation evolve from 2.	

flexible to rigorous as the lifecycle activities evolve from early,

creative tasks to later production tasks. [Anti-pattern: Define the

entire project’s lifecycle process as light or heavy.] Process rigor

should be much like the force of gravity: the closer you are to a

product release, the stronger the influence of process, tools, and

instrumentation on the day-to-day activities of the workforce. The

farther you are from a release date, the weaker the influence. This

is a key requirement to be fulfilled by the development platform

with automation support for process enactment if practitioners are to

perceive a lifecycle process that delivers ‘painless governance’..

Progress assessment is honest: Healthy projects display a sequence of 3.	

progressions and digressions. [Anti-pattern: consistently progressing

to 100 percent earned value as the original plan is executed, without

any noticeable digression until late in the life cycle]. The transition

to a demonstration-driven life cycle results in a very different project

profile. Rather than a linear progression (often dishonest) of earned value,

a healthy project will exhibit an honest sequence of progressions and

digressions as they resolve uncertainties, re-factor architectures and scope,

and converge on an economically governed solution.

Highlights

Scope evolves from abstract and

accurate representations into precise

and detailed representations as

stakeholder understanding evolves

(i.e., uncertainty is reduced).

Improving Software Economics
Page 29

Highlights 4. Testing is the steering mechanism: Testing of demonstrable releases

is a full lifecycle activity and the cost of change in software releases

improves or stabilizes over time. [Anti-pattern: testing is a subor-

dinate, bureaucratic, late lifecycle activity and the cost of change

increases over time]. Testing demands objective evaluation through

execution of software releases under a controlled scenario with an

expected outcome. In an agile delivery process that is risk-driven,

integration testing will mostly precede unit testing and result in more

flexibility in steering with more favorable cost of change trends.

With immature metrics and measures, software project managers are still overly

focused on playing defense and struggling with subjective risk management.

With further advances in software measurement and collaborative platforms

that support process enactment of best practices and integrated metrics col-

lection and reporting, we can manage uncertainty more objectively. Software

project managers can invest more in playing offense through balancing risks

with opportunities, and organizations can better exploit the value of software to

deliver better economic results in their business.

A framework for reasoning about improving software economics
Today’s empirical software cost estimation models (like COCOMO II,

SEER, QSM Slim and others) allow users to estimate costs to within 25-30

percent, on three out of four projects.15 This level of unpredictability

in the outcome of software projects is a strong indication that software

delivery and governance clearly requires an economics discipline that

can accommodate high levels of uncertainty. These cost models include

dozens of parameters and techniques for estimating a wide variety of

software development projects. For the purposes of this discussion, I will

simplify these estimation models into a function of four basic parameters:

Testing demands objective evaluation

through execution of software

releases under a controlled scenario

with an expected outcome.

Improving Software Economics
Page 30

Complexity. The complexity of the software is typically quantified 1.	

1. in units of human-generated stuff and its quality. Quantities may

be assessed in lines of source code, function points, use-case points,

or other measures. Qualities like performance, reuse, reliability, and

feature richness are also captured in the complexity value. Simpler and

more straightforward applications will result in a lower complexity value.

Process. This process exponent typically varies in the range 1.0 to 2. 2.	

1.25 and characterizes the governance methods, techniques, maturity,

appropriateness, and effectiveness in converging on wins for all

stakeholders. Better processes will result in a lower exponent.

Teamwork. This parameter captures the skills, experience, motivations 3.	

3. and know-how of the team along with its ability to collaborate toward

well-understood and shared goals. More effective teams will result in a

lower multiplier.

Tools. The tools parameter captures the extent of process automation, 4.	

4. process enactment, instrumentation and team synchronization. Better

tools will result in a lower multiplier.

The relationships among these parameters in modeling the estimated effort

can be expressed as follows:

Resources = (Complexity) (Process) * (Teamwork) * (Tools)

By examining the mathematical form of this equation and the empirical data

in the various models and their practical application across thousands of

industry projects, one can easily demonstrate that these four parameters are

in priority order when it comes to the potential economic leverage. In other

words, a 10 percent reduction in complexity is worth more than a 10 percent

improvement in the process, which is worth more than a 10 percent more

capable team, which is worth more than a 10 percent increase in automation.

In practice, this is exactly what IBM services teams have learned over

the last twenty-five years of helping software organizations improve their

software development and delivery capability.

Resources = (Complexity) (Process) *

(Teamwork) * (Tools)

Highlights

We have been compiling best practices and economic improvement experiences

for years. We are in the continuing process of synthesizing this experience

into more consumable advice and valuable intellectual property in the form

of value traceability trees, metrics patterns, benchmarks of performance, and

instrumentation tools to provide a closed loop feedback control system for

improved insight and management of the econometrics introduced earlier. Figure 6

summarizes the rough ranges of productivity impact and timeframes associated with

many of the more common initiatives that IBM is investing in and delivering every

day across the software industry. The impact on productivity typically affects only

a subset of project and organization populations — they require savvy tailoring to

put them into a specific context. As the scale of an organization grows, the impacts

dampen predominantly because of standard inertia — i.e., resistance to change.

We have been careful to present ranges and probability distributions to ensure that it

is clear that “your mileage may vary.” The key message from Figure 6 is that there is a

range of incremental improvements that can be achieved and there is a general hierarchy

of impact. The more significant improvements, like systematic reduction in complexity

and major process transformations, also require the more significant investments and

time to implement. These tend to be broader organizational initiatives. The more incre-

mental process improvements, skill improvements, and automation improvements targeted

at individual teams, projects, or smaller organizations are more predictable and straight-

forward to deploy.

Improving Software Economics
Page 31

Highlights

As the scale of an organization grows,

the impacts to productivity dampen

predominantly because of standard

inertia — i.e., resistance to change.

 Improving Software Economics
 Page 32

Increased Flexibility by
Reducing Complexity

Much culture change
Costs=25%-50%
(Per person year costs)
Timeframe = Years
Impacts: 2x – 10x

Service Oriented Architecture
Middleware reuse
Reuse success
Packaged applications
Scope management
Architectural breakthroughs

Improve process

Some culture change
Costs=10%-35%
(Per person year costs)
Timeframe = Months
Impacts: 25%-100%

Process rightsizing
Agile governance
Variance reduction
Best practice deployment
Project management
Process maturity advancement

Improve Teamwork

Predictable
Costs=5-10%
(Per person year costs)
Timeframe = Weeks
Impacts: 15%-35%

30% Collaborative development
platform

25% Geographically distributed
development

20% Best practices, processes
10% Training
10% Reinforced skills/practices

in tools and automation

Automate more

Very predictable
Costs= < 5%
(Per person year costs)
Timeframe = Days/weeks
Impacts: 5%-25%

20% Code quality scanning
20% Change management automation
15% Test management automaton
15% Build management
15% Metrics, reporting
10% Analysis/design automation
10% Requirements management

Resources = (Complexity) (Process) * (Teamwork) * (Tools)

Complexity
Human generated stuff
Quality/performance
Scope

Methods/maturity
Agility
Metrics/Measures

Skills/Experience
Collaboration
Motivation

Automation
Integration
Process enactment

Process Teamwork Tools

 Figure 6: A rough overview of expected improvements for some best practices

Improving Software Economics
Page 33

Highlights The main conclusion that one can draw from the experience captured in

Figure 6 is that improvements in each dimension have significant returns

on investment. The key to substantial improvement in business performance

is a balanced attack across the four basic parameters of the simplified

software cost model: reduce complexity, streamline processes, optimize team

contributions, and automate with tools. There are significant dependencies

among these four dimensions of improvement. For example, new tools enable

complexity reduction and process improvements; size reduction leads to

process changes; collaborative platforms enable more effective teamwork;

and process improvements drive tool advances. At IBM, and in our broad

customer base of software development organizations, we have found that

the key to achieving higher levels of improvements in teamwork, process

improvement, and complexity reduction lies in supporting and reinforcing

tooling and automation.

Deploying best practices and changing cultures is more straightforward

when you can systematically transform ways of working. This is done

through deployment of tangible tools, which automate and streamline

the best practices and are embraced by the practitioners, because these

tools increase the practitioner’s creative time spent in planning, analysis,

prototyping, design, refactoring, coding, testing and deploying, while these

tools decrease the time spent on unproductive activities such as unnecessary

rework, change propagation, traceability, progress reporting, metrics

collection, documentation, and training.

I realize that listing training among the unproductive activities will raise

the eyebrows of some people. Training is an organizational responsibility,

not a project responsibility. Any project manager who bears the burden

of training people in processes, technologies, or tools is worse off than a

project manager with a fully trained work force. A fully trained work force

on every project is almost never possible, but employing trained people is

always better than employing untrained people, other things being equal. In

this sense, training is considered a non-value-added activity. This is one of

the fundamental dilemmas that organizations face as they try to improve in

any one of the four dimensions. The overhead cost of training their teams

on new things is a significant inhibitor to project success; this cost explains

many managers’ resistance to any new change initiative, whether it regards

new tools, practices, or people.

Deploying best practices and

changing cultures is more

straightforward when you can

systematically transform ways

of working. This is done through

deployment of tangible tools.

Improving Software Economics
Page 34

In making the transition to new techniques and technologies, there is always

apprehension and concern about failing, particularly by project managers

who are asked to make significant changes in the face of tremendous

uncertainty. Maintaining the status quo and relying on existing methods

is usually considered the safest path. In the software industry, where

most organizations succeed on less than half of their software projects,

maintaining the status quo is not a safe bet. When an organization does

decide to make a transition, two pieces of conventional wisdom are usually

offered by both internal champions and external change agents: (1) Pioneer

any new techniques on a small pilot program. (2) Be prepared to spend more

resources – money and time – on the first project that makes the transition.

In my experience, both of these recommendations are counterproductive.

Small pilot programs have their place, but they rarely achieve any paradigm

shift within an organization. Trying out a new little technique, tool, or

method on a very rapid, small-scale effort – less than three months, say, and

with just a few people – can frequently show good results, initial momentum,

or proof of concept. The problem with pilot programs is that they are almost

never considered on the critical path of the organization. Consequently, they

do not merit “A” players, adequate resources, or management attention. If

a new method, tool, or technology is expected to have an adverse impact

on the results of the trailblazing project, that expectation is almost certain

to come true. Why? Because software projects almost never do better than

planned. Unless there is a very significant incentive to deliver early (which

is very uncommon), projects will at best steer their way toward a target date.

Therefore, the trailblazing project will be a non-critical project, staffed with

non-critical personnel of whom less is expected. This adverse impact ends up

being a self-fulfilling prophecy.

The most successful organizational paradigm shifts I have seen resulted

from similar sets of circumstances: the organizations took their most critical

project and highest caliber personnel, gave them adequate resources, and

demanded better results on that first critical project.

Small pilot programs have their place,

but they rarely achieve any paradigm

shift within an organization... they

are almost never considered on the

critical path of the organization.

In successful paradigm shifts, the

organizations took their most critical

project and highest caliber personnel,

gave them adequate resources, and

demanded better results on that first

critical project.

Highlights

Maintaining the status quo and

relying on existing methods is

usually considered the safest path.

In the software industry, where

most organizations succeed on less

than half of their software projects,

maintaining the status quo is not a

safe bet.

Conclusion
Day-to-day decisions in software projects have always been, and continue to

be, dominated by decisions rooted in the tradition of economics discipline,

namely: value judgments, cost tradeoffs, human factors, macro-economic

trends, technology trends, market circumstances, and timing. Software

project activities are rarely concerned with engineering disciplines such

as mathematics, material properties, laws of physics, or established and

mature engineering models. The primary difference between economics and

engineering governance is the amount of uncertainty inherent in the product

under development. The honest treatment of uncertainty is the foundation

of today’s best practices; we have learned over and over that what makes a

software practice better or best is that the practice reduces uncertainty in

the target outcome.

Here are four concluding thoughts that summarize the main themes of this

paper:

Agile software delivery is better served by economic governance principles. 1.	

With software delivery becoming a more dominant business process in most

product, systems, and services companies, the predictability and track record

of applying conventional engineering principles to managing software won’t

be competitive.

Our top ten principles of agile software delivery have a common theme: They 2.	

describe “economic governance” approaches that attack uncertainties and

reduce the variance in the estimate to complete.

The primary metric for demonstrating that an organization or project has 3.	

transitioned to effective agile delivery is the trend in the cost of change. This

measure of the adaptability inherent in software releases is a key indicator

of the flexibility required to continuously navigate uncertainties and steer

projects toward success.

The next wave of technological advances to improve the predictability and 4.	

outcomes of software economics needs to be in measurement and instrumen-

tation that supports better economic governance.

IBM, and the Rational organization in particular, will continue to invest in

research, practices, measures, instrumentation, and tools to advance our knowl-

edge and practice of software economic governance, so that our customers can

exploit a mature business process for agile software delivery.

Improving Software Economics
Page 35

Improving Software Economics
Page 36

References
Royce, Bittner, Perrow, 1.	 The Economics of Software Development, Addison-

Wesley, 2009.

Royce, Walker, “Successful Software Management Style: Steering and Bal-2.	

ance,” IEEE Software, Vol. 22, No. 5, September/October 2005

Royce, Winston W., 3.	 “Managing the Development of Large Software Systems,”

IEEE Wescon, 1970.

Kruchten, Philippe, 4.	 The Rational Unified Process: An Introduction, Addison-

Wesley, 1999, 2003.

Kruchten, Philippe, Kroll, Per, 5.	 The Rational Unified Process Made Easy: A
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

Hubbard, Douglass W., 6.	 How to Measure Anything, John Wiley and Sons,

2007.

Williams, Laurie, Kessler, Robert. 7.	 Pair Programming Illuminated, Addison

Wesley, 2003.

Williams, L., Krebs, W., Layman, L., Anton, A., “Toward a Framework for 8.	

Evaluating Extreme Programming, Empirical Assessment in Software Engi-

neering,” (EASE), 2004.

Austin, Robert, Devin, Lee, 9.	 Artful Making, FT Press, 2003.

 © Copyright IBM Corporation 2009

 IBM Corporation

 Software Group

 Route 100

 Somers, NY 10589

 U.S.A.

 Produced in the United States of America

 May 2009

 All Rights Reserved

 IBM, the IBM logo, ibm.com, Rational, and the
Rational Unified Process are trademarks or
registered trademarks of International Business
Machines Corporation in the United States,
other countries, or both. If these and other IBM
trademarked terms are marked on their first
occurrence in this information with a trademark
symbol (® or ™), these symbols indicate U.S.
registered or common law trademarks owned by
IBM at the time this information was published.
Such trademarks may also be registered or
common law trademarks in other countries. A
current list of IBM trademarks is available on the
Web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

 Other company, product, or service names may be
trademarks or service marks of others.

 References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

 The information contained in this document is
provided for informational purposes only. While
efforts were made to verify the completeness
and accuracy of the information contained in this
documentation, it is provided “as is” without warranty
of any kind, express or implied. In addition, this
information is based on IBM’s current product plans
and strategy, which are subject to change by IBM
without notice. IBM shall not be responsible for any
damages arising out the use of, or otherwise related
to, this documentation or any other documentation.
Nothing contained in this document is intended for,
nor shall have the effect of, creating any warranties
or representations from IBM (or its suppliers or
licensors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

RAW14148-USEN-00

Endnotes

 Royce, Bittner, Perrow, 1.	 The Economics of Software Development, Addison-Wesley, 2009.

 Royce, Walker, 2.	 “Successful Software Management Style: Steering and Balance,” IEEE

Software, Vol. 22, No. 5, September/October 2005

Williams, Laurie, Kessler, Robert. 3.	 Pair Programming Illuminated, Addison Wesley, 2003.

Williams, L., Krebs, W., Layman, L., Anton, A., “Toward a Framework for Evaluating Extreme 4.	

Programming, Empirical Assessment in Software Engineering,” (EASE), 2004.

Royce, Walker E., 5.	 Software Project Management, Addison Wesley, 1998.

Royce, Winston W., “Managing the Development of Large Software Systems,” IEEE Wescon, 6.	

1970.

Royce, Walker E., 7.	 Software Project Management, Addison Wesley, 1998.

Royce, Walker E., 8.	 Software Project Management, Addison-Wesley, 1998.

Royce, Walker E., 9.	 Software Project Management, Addison-Wesley, 1998.

Appendix D in my book 10.	 Software Project Management provides a large scale case study of a

DoD project that achieved the cost of change pattern on the right side of Figure 2.

Kruchten, Philippe, 11.	 The Rational Unified Process: An Introduction, Addison-Wesley, 1999,

2003.

 The variance of a random variable (i.e., a probability distribution or sample) is a measure of 12.	

statistical dispersion. Technically, variance is defined as the average of the squared distance

of all values from the mean. The mean describes the expected value and the variance

represents a measure of uncertainty in that expectation. The square root of the variance is

called the standard deviation and is a more accepted measure since it has the same units as

the random variable.

Hubbard, Douglass W., 13.	 How to Measure Anything, John Wiley and sons, 2007.

Royce, Walker E., 14.	 Software Project Management, Addison-Wesley, 1998.

Boehm, Barry. 15.	 Software Cost Estimation with COCOMO II, Prentice Hall PTR, 2000.

	Royce_SoftwareEconomics_whitepaper-test.pdf
	Improving Software Economics
	Top 10 Principles of Achieving Agility at Scale
	The software industry has characterized new and improved software life-cycle models using many different terms, such as: spiral development, incremental development, evolutionary development, iterative development, and agile development. In spirit, these models have many things in common, and, as a class, they represent a common theme: anti-waterfall development. However, after 20-30 years of improvement and transition, the waterfall model mindset is still the predominant governance process in most industrial-strength software development organizations. By my estimation, more than half of the software projects in our industry still govern with a waterfall process, particularly organizations with mature processes. Perhaps geriatric could be used as an explicit level of process maturity, one that should be recognized in software maturity models to help organizations identify when their process has become too mature and in need of a major overhaul.
	Agile

	Top 10 Principles of Conventional Software Management
	Top 10 Principles of Iterative Software Management
	Reducing uncertainty: The basis of best practice
	Achieving “Agility at Scale”: Top 10 principles of Agile software delivery
	A framework for reasoning about improving software economics
	Conclusion
	References

	Royce_SoftwareEconomics_whitepaper-test1.pdf
	Improving Software Economics
	Top 10 Principles of Achieving Agility at Scale
	The software industry has characterized new and improved software life-cycle models using many different terms, such as: spiral development, incremental development, evolutionary development, iterative development, and agile development. In spirit, these models have many things in common, and, as a class, they represent a common theme: anti-waterfall development. However, after 20-30 years of improvement and transition, the waterfall model mindset is still the predominant governance process in most industrial-strength software development organizations. By my estimation, more than half of the software projects in our industry still govern with a waterfall process, particularly organizations with mature processes. Perhaps geriatric could be used as an explicit level of process maturity, one that should be recognized in software maturity models to help organizations identify when their process has become too mature and in need of a major overhaul.
	Agile

	Top 10 Principles of Conventional Software Management
	Top 10 Principles of Iterative Software Management
	Reducing uncertainty: The basis of best practice
	Achieving “Agility at Scale”: Top 10 principles of Agile software delivery
	A framework for reasoning about improving software economics
	Conclusion
	References

	Royce_SoftwareEconomics_whitepaper-test2.pdf
	Improving Software Economics
	Top 10 Principles of Achieving Agility at Scale
	The software industry has characterized new and improved software life-cycle models using many different terms, such as: spiral development, incremental development, evolutionary development, iterative development, and agile development. In spirit, these models have many things in common, and, as a class, they represent a common theme: anti-waterfall development. However, after 20-30 years of improvement and transition, the waterfall model mindset is still the predominant governance process in most industrial-strength software development organizations. By my estimation, more than half of the software projects in our industry still govern with a waterfall process, particularly organizations with mature processes. Perhaps geriatric could be used as an explicit level of process maturity, one that should be recognized in software maturity models to help organizations identify when their process has become too mature and in need of a major overhaul.
	Agile

	Top 10 Principles of Conventional Software Management
	Top 10 Principles of Iterative Software Management
	Reducing uncertainty: The basis of best practice
	Achieving “Agility at Scale”: Top 10 principles of Agile software delivery
	A framework for reasoning about improving software economics
	Conclusion
	References

	Royce_SoftwareEconomics_whitepaper-test3.pdf
	Improving Software Economics
	Top 10 Principles of Achieving Agility at Scale
	The software industry has characterized new and improved software life-cycle models using many different terms, such as: spiral development, incremental development, evolutionary development, iterative development, and agile development. In spirit, these models have many things in common, and, as a class, they represent a common theme: anti-waterfall development. However, after 20-30 years of improvement and transition, the waterfall model mindset is still the predominant governance process in most industrial-strength software development organizations. By my estimation, more than half of the software projects in our industry still govern with a waterfall process, particularly organizations with mature processes. Perhaps geriatric could be used as an explicit level of process maturity, one that should be recognized in software maturity models to help organizations identify when their process has become too mature and in need of a major overhaul.
	Agile

	Top 10 Principles of Conventional Software Management
	Top 10 Principles of Iterative Software Management
	Reducing uncertainty: The basis of best practice
	Achieving “Agility at Scale”: Top 10 principles of Agile software delivery
	A framework for reasoning about improving software economics
	Conclusion
	References

	Royce_SoftwareEconomics_whitepaper-test4.pdf
	Improving Software Economics
	Top 10 Principles of Achieving Agility at Scale
	The software industry has characterized new and improved software life-cycle models using many different terms, such as: spiral development, incremental development, evolutionary development, iterative development, and agile development. In spirit, these models have many things in common, and, as a class, they represent a common theme: anti-waterfall development. However, after 20-30 years of improvement and transition, the waterfall model mindset is still the predominant governance process in most industrial-strength software development organizations. By my estimation, more than half of the software projects in our industry still govern with a waterfall process, particularly organizations with mature processes. Perhaps geriatric could be used as an explicit level of process maturity, one that should be recognized in software maturity models to help organizations identify when their process has become too mature and in need of a major overhaul.
	Agile

	Top 10 Principles of Conventional Software Management
	Top 10 Principles of Iterative Software Management
	Reducing uncertainty: The basis of best practice
	Achieving “Agility at Scale”: Top 10 principles of Agile software delivery
	A framework for reasoning about improving software economics
	Conclusion
	References

	Royce_SoftwareEconomics_whitepaper-test5.pdf
	Improving Software Economics
	Top 10 Principles of Achieving Agility at Scale
	The software industry has characterized new and improved software life-cycle models using many different terms, such as: spiral development, incremental development, evolutionary development, iterative development, and agile development. In spirit, these models have many things in common, and, as a class, they represent a common theme: anti-waterfall development. However, after 20-30 years of improvement and transition, the waterfall model mindset is still the predominant governance process in most industrial-strength software development organizations. By my estimation, more than half of the software projects in our industry still govern with a waterfall process, particularly organizations with mature processes. Perhaps geriatric could be used as an explicit level of process maturity, one that should be recognized in software maturity models to help organizations identify when their process has become too mature and in need of a major overhaul.
	Agile

	Top 10 Principles of Conventional Software Management
	Top 10 Principles of Iterative Software Management
	Reducing uncertainty: The basis of best practice
	Achieving “Agility at Scale”: Top 10 principles of Agile software delivery
	A framework for reasoning about improving software economics
	Conclusion
	References

	Royce_SoftwareEconomics_whitepaper-test6.pdf
	Improving Software Economics
	Top 10 Principles of Achieving Agility at Scale
	The software industry has characterized new and improved software life-cycle models using many different terms, such as: spiral development, incremental development, evolutionary development, iterative development, and agile development. In spirit, these models have many things in common, and, as a class, they represent a common theme: anti-waterfall development. However, after 20-30 years of improvement and transition, the waterfall model mindset is still the predominant governance process in most industrial-strength software development organizations. By my estimation, more than half of the software projects in our industry still govern with a waterfall process, particularly organizations with mature processes. Perhaps geriatric could be used as an explicit level of process maturity, one that should be recognized in software maturity models to help organizations identify when their process has become too mature and in need of a major overhaul.
	Agile

	Top 10 Principles of Conventional Software Management
	Top 10 Principles of Iterative Software Management
	Reducing uncertainty: The basis of best practice
	Achieving “Agility at Scale”: Top 10 principles of Agile software delivery
	A framework for reasoning about improving software economics
	Conclusion
	References

