
Adapting Agile Methods for Complex
Environments
December 2009

The Agile Scaling Model (ASM):
Adapting Agile Methods for Complex
Environments

Scott W. Ambler
Chief Methodologist for Agile, IBM Rational

Executive summary
The Agile Scaling Model (ASM) defines a roadmap for effective adoption and

tailoring of agile strategies to meet the unique challenges faced by a system

delivery team. The first step to scaling agile strategies is to adopt a disciplined

agile delivery lifecycle which scales mainstream agile construction techniques

to address the full delivery process, from project initiation to deployment into

production. The second step is to recognize which scaling factors, if any, are

applicable to a project team and then tailor your adopted strategies accordingly

to address the range of complexities that the team faces.

The scaling factors are:

1. Team size

2. Geographical distribution

3. Regulatory compliance

4. Domain complexity

5. Organizational distribution

6. Technical complexity

7. Organizational complexity

8. Enterprise discipline

This paper begins with an overview of the fundamentals of agile software

engineering and of common agile methodologies. It then argues for the need

to scale agile development strategies to address the full delivery lifecycle,

showing how the Scrum method can be extended to do exactly that. In fact, our

experience is that the first “scaling factor” that organizations face with agile

development is lifecycle scope. It then explores the eight agile scaling factors

and their implications for successfully scaling agile software delivery to meet

the real-world needs of your organization.

Introduction
Agile software development is an evolutionary, highly collaborative, disciplined,

quality-focused approach to software development, whereby potentially shippable

working software is produced at regular intervals for review and course correction.

Agile software development processes1 include Scrum, Extreme Programming

(XP), Open Unified Process (OpenUP), and Agile Modeling (AM), to name a few.

At IBM we’ve used agile techniques internally for many years, and both the IBM

Global Services and IBM Rational organizations have been working with many

 2 Executive Summary

 2 Introduction

 4 Agile Software Development

 8 Criteria to determine if a team is

agile

 9 The Agile Scaling Model (ASM)

11 Core agile development

13 Disciplined agile delivery

20 Agility at Scale

25 Implications of ASM

31 Become as agile as you can be

33 Parting Thoughts

33 Acknowledgements

33 About the Author

Contents

Adapting Agile Methods for Complex
Environments
Page 2

Agile software development is an

evolutionary, highly collaborative,

disciplined, quality-focused approach

to software development.

Adapting Agile Methods for Complex
Environments
Page 3

Highlights
of our customers to help them apply agile techniques within their own envi-

ronments, often under complex conditions at scale. Agile techniques held such

promise that beginning in mid-2006 an explicit program was put in place to

adopt agile processes on a wide-scale basis throughout IBM Software Group, an

organization with over 25,000 developers.

Agile software development techniques have taken the industry by storm,

with 76% of organizations reporting in 2009 that they had one or more agile

projects underway [1]. Agile development is becoming widespread because it

works well – organizations are finding that agile project teams, when compared

to traditional project teams, enjoy higher success rates, deliver higher quality,

have greater levels of stakeholder satisfaction, provide better return on

investment (ROI), and deliver systems to market sooner [2]. But, just because

the average agile team is more successful than the average traditional team,

that doesn’t mean that all agile teams are successful nor does it mean that all

organizations are achieving the potential benefits of agile to the same extent.

As you may know, agile approaches support software construction by small,

co-located teams. What you may not have heard is that agile approaches are

being used for the development of a wide range of systems, including but not

limited to web-based applications, mobile applications, fat-client applications,

business intelligence (BI) systems, embedded software, life-critical systems,

and even mainframe applications. Furthermore, agile approaches are

being applied by a range of organizations, including financial companies,

manufacturers, retailers, online/e-commerce companies, healthcare

organizations, and government agencies. Some organizations, including IBM,

are applying agile techniques on large project teams — hundreds of people —

and on distributed teams, in regulatory environments, in legacy environments,

and in high-complexity environments.

The point is that agile approaches are being used in a wide range of situations,

not just the small, co-located team environments that dominate the early agile

literature2. Agile strategies are being applied throughout the entire software deliv-

ery lifecycle, not just construction, and very often in very complex environments

that require far more than a small, co-located team armed with a stack of index

cards. Every project team finds itself in a unique situation, with its own goals, its

abilities, and challenges to overcome. What they have in common is the need to

adopt and then tailor agile methods, practices, and tools to address those unique

situations. But how? We know this can be very hard to do well.

Agile development is becoming

widespread because it works well -

organizations are finding that agile

project teams, when compared to

traditional project teams, enjoy higher

success rates, deliver higher quality,

have greater levels of stakeholder

satisfaction, provide better return on

investment (ROI), and deliver systems

to market sooner.

Agile approaches are being used in

a wide range of situations, not just

the small, co-located team environ-

ments that dominate the early agile

literature. Agile strategies are being

applied throughout the entire software

delivery lifecycle.

Highlights
The goal of this paper is to share our experiences learned in applying agile

strategies and techniques in organizations around the world, often at a scale

far larger than the techniques were pioneered for. I begin with an overview

of agile software development concepts and several agile methodologies

which reflect those concepts. I then describe the Agile Scaling Model (ASM),

a contextual framework for scaling the plethora of agile methodologies and

practices out there today.

Agile software development
If you already understand the values and principles of the Agile Manifesto,

you can potentially skip that section below. What will likely be new to you is a

definition for agile software development is also proposed, the implications of

which this paper explores in detail.

The Agile Manifesto
To address the challenges faced by software developers an initial group of

seventeen methodologists formed the Agile Software Development Alliance

(www.agilealliance.com), often referred to simply as the Agile Alliance, in

February of 2001. An interesting thing about this group is that they all came

from different backgrounds, yet were able to come to an agreement on issues

that methodologists typically don’t agree upon. They crafted a manifesto, and

a collection of supporting principles, for encouraging better ways of developing

software. The manifesto defines four values and twelve principles which form

the foundation of the agile movement.

The Agile Manifesto3 states:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on
the left more.

Adapting Agile Methods for Complex
Environments
Page 4

Seventeen methodologists crafted

a manifesto, and a collection

of supporting principles, for

encouraging better ways of

developing software. The manifesto

defines four values and twelve

principles which form the foundation

of the agile movement.

Highlights
The values of the Agile Manifesto are supported by a collection of 12 principles

[4] which explore in greater detail the philosophical foundation of agile software

methods. These principles are:

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the

project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agil-

ity.

10. Simplicity— the art of maximizing the amount of work not done— is essential.

11. The best architectures, requirements, and designs emerge from self-organiz-

ing teams.

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

Adapting Agile Methods for Complex
Environments
Page 5

The values of the Agile Manifesto

are supported by a collection of 12

principles .

Toward a definition
The values and principles of the Agile Manifesto provide a solid philosophical

foundation for effective software development, but a precise definition would be

helpful for describing a specific approach. In fact, there is no official definition

for agile software development and there likely never will be. Here is a potentially

useful working definition: 4

Agile software development is an evolutionary (iterative and incremental)
approach which regularly produces high quality software in a cost effective and
timely manner via a value driven lifecycle. It is performed in a highly collabo-
rative, disciplined, and self-organizing manner with active stakeholder partici-
pation to ensure that the team understands and addresses the changing needs
of its stakeholders. Agile software development teams provide repeatable results
by adopting just the right amount of ceremony for the situation they face.

Let’s explore some key concepts in this definition:

1. Evolutionary - Agile strategies are both iterative and incremental in nature.

“Iterative” means that you are working on versions of functioning code

through a series of activities that are repeated for each version, or build, until

the project is complete. But this doesn’t mean that the work itself is repetitive.

On any given day you may do some requirements analysis, some testing, some

programming, some design, some more testing, and so on. “Incremental”

means that you add new functionality and working code to the most recent

build, until such time as the stakeholder determines there is enough value to

release the product..

2. Regularly produces high quality software - Agilists are said to be quality-

focused. They prefer to test often and early, and the more disciplined

practitioners even take a test-first approach, which means writing a single

test and the just enough production code to fulfill that test (then they iterate).

Many agile developers have adopted the practice of refactoring, which is a

technique where you make simple changes to your code or schema which

improves its quality without changing its semantics. Adoption of these sorts

of quality techniques appears to succeed. Agile teams are more likely to

deliver high quality systems than traditional teams [2]. Within IBM, we focus

on ‘consumability’ within our software engineering teams. Consumability

encompasses quality and other features such as ease of deployment and

system performance [22].

3. Cost-effective and timely manner - Agile teams prefer to implement function-

ality in priority order, with the priority being defined by their stakeholders (or

Adapting Agile Methods for Complex
Environments
Page 6

Highlights

Agile software development is

an evolutionary (iterative and

incremental) approach which

regularly produces high quality

software in a cost effective and

timely manner via a value driven

lifecycle.

 a representative thereof). Working in priority order enables agile teams

to maximize the return on investment (ROI) because they are working

on the high-value functionality as defined by their stakeholders,

thereby increasing cost effectiveness. Agile teams also prefer to produce

potentially shippable software each iteration (an iteration is a time-

box, typically 2-4 weeks in length), enabling their stakeholders to

determine when they wish to have a release delivered to them and

thereby improving timeliness. Short iterations reduce the feedback cycle,

improving the chance that agile teams will discover problems early

(they “fail fast”) and thereby enable them to address the problems when

they’re still reasonably inexpensive to do so.5

4. Value-driven lifecycle - One result of building a potentially shippable solution

every iteration is that agile teams produce concrete value in a consistent and

visible manner throughout the lifecycle.

5. Highly collaborative - People build systems, and the primary determinant

of success on a development project is the individuals and the way that they

work together. Agile teams strive to work as closely together and as effec-

tively as possible. This characteristic must mark every engineer on the team,

including those in the leadership roles [23].

6. Disciplined - Agile software development requires greater discipline on the

part of practitioners than what is typically required by traditional approaches

[31].

7 Self organizing - This means that the people who do the work also plan and

estimate the work.

8. Active stakeholder participation - Agile teams work closely with their stake-

holders, who include end users, managers of end users, the people paying

for the project, enterprise architects, support staff, operations staff, and many

more. Within IBM we distinguish between four categories of stakeholder:

principles/sponsors, partners (business partners and others), end users, and

insiders. These stakeholders, or their representatives (product owners in

Scrum6, or on-site customers in Extreme Programming7, or a resident stake-

holder in scaling situations), are expected to provide information and make

decisions in a timely manner.

9. Changing needs of stakeholders - As a project progresses, stakeholders typi-

cally gain a better understanding of what they want, particularly if they’re

shown working (i.e., functional, though incomplete) software on a regular

basis; consequently, they change their requirements as these reviews occur.

Changes in the business environment, or changes in organization priority,

will also motivate changes to the requirements.

Adapting Agile Methods for Complex
Environments
Page 7

Highlights

Agile teams prefer to produce

potentially shippable software each

iteration, enabling stakeholders to

determine when they wish to have

a release delivered and thereby

improving timeliness. Short iterations

reduce the feedback cycle, improving

the chance that agile teams will

discover problems early.

10. Repeatable results - Stakeholders are rarely interested in how you deliver a

solution; they’re only interested in what you deliver. In particular, they are

often interested in having a solution that meets their actual needs, in spend-

ing their money wisely, in a high-quality solution, and in something that’s

delivered in a timely manner. In other words, they’re interested in repeatable

results, not repeatable processes.

11. Right amount of ceremony for the situation - “Ceremony” refers to the degree

of process adherence (methodology) over the course of a project. High cer-

emony might involve, for example, copious documentation or formal reviews

of diagrams and other schema. Agile approaches minimize ceremony in favor

of delivering concrete value in the form of working software, but that doesn’t

mean they do away with ceremony completely. Agile teams will still hold

reviews, when it makes sense to do so. Agile teams will still produce deliver-

able documentation, such as operations manuals and user manuals, and as do

traditional teams [5].

Criteria to determine if a team is agile
A common problem in many organizations is that undisciplined “ad-hoc”

teams often claim to be agile, because they’ve read an article or two about

agile development, and interpret agility to mean any cool, liberated form

of undocumented software creativity. These ad-hoc teams often run into

trouble, and give actual agile teams a bad name. I suggest the following five

criteria to determine if a team is truly agile:

1. Working software - Agile teams produce working software on a regular

basis, typically in the context of short, stable, time-boxed iterations.

2. Active stakeholder participation - Agile teams work closely with their

stakeholders, ideally on a daily basis.

3. Regression testing - Agile teams do, at a minimum, continuous developer

regression testing.8 Disciplined agile teams take a Test-Driven Develop-

ment (TDD) approach.

4. Organization - Agile teams are self-organizing, and disciplined agile

teams work within an appropriate governance framework at a sustainable

pace. Agile teams are also cross-functional “whole teams,” with enough

people with the appropriate skills to address the goals of the team.

5. Improvement - Agile teams regularly reflect on, and disciplined teams

also measure, how they work together and then act to improve on their

findings in a timely manner.

Adapting Agile Methods for Complex
Environments
Page 8

Highlights

Undisciplined "ad-hoc" teams often

claim to be agile, because they've

read an article or two about agile

development, and interpret agility

to mean any cool, liberated form of

undocumented software creativity.

These ad-hoc teams often run into

trouble.

Highlights
There are four important points to make about these criteria:

1. You may still be working on fulfilling some criteria - Your organization

may be fairly new to agile and is still working to adopt some agile strate-

gies. This is perfectly fine, as long as they explicitly recognize the gaps

and plan to improve. However, if the team doesn’t recognize the need to

fulfill these five criteria, or believe that they’re “special” for some reason

and don’t need to do so, then they’re not agile no matter how adamant

they are.

2. The criteria are situational - Several of the terms in the above criteria

are underlined to indicate where your strategy needs to be flexible. For

example, some agile teams will produce working software every two

weeks whereas others may be in a more complex situation and may only

do so every two months (although IBM culture routinely challenges even

our most complex teams to integrate and stabilize frequently). Different

situations require different strategies, meaning that one process size does

not fit all.

3. The criteria are easy to assess - My experience is that I’ve always been

able to identify ad-hoc teams who claim to be agile with the five listed

criteria, but who very obviously fail in several of them. Teams that are

truly agile are standouts.

4. A non-agile team could pass - It’s conceivable that a non-agile team

could meet all five criteria, although I have yet to run into one. If so,

perhaps they could benefit from some agile ideas but it’s likely that

your organization has other teams in greater need of help than this one

anyway – declare success and move on!

The Agile Scaling Model (ASM)
The Agile Scaling Model (ASM) is a contextual framework for effective

adoption and tailoring of agile practices to meet the unique challenges faced

by a system delivery team of any size. Figure 1 overviews the ASM, depicting

how the ASM distinguishes between three scaling categories:

1. Core agile development - Core agile methods, such as Scrum and Agile Mod-

eling, are self governing, have a value-driven system development lifecycle

(SDLC), and address a portion of the development lifecycle. These methods,

and their practices – such as daily stand up meetings and requirements

envisioning – are optimized for small, co-located teams developing fairly

straightforward systems.

Adapting Agile Methods for Complex
Environments
Page 9

The Agile Scaling Model is a

contextual framework for effective

adoption and tailoring of agile

practices for a system delivery team

of any size.

Adapting Agile Methods for Complex
Environments
Page 10

2. Disciplined agile delivery - Disciplined agile delivery processes, which

include Dynamic System Development Method (DSDM) and Open Unified

Process (OpenUP), go further by covering the full software development

lifecycle from project inception to transitioning the system into your produc-

tion environment (or into the marketplace as the case may be). Disciplined

agile delivery processes9 are self organizing within an appropriate governance

framework and take both a risk and value driven approach to the lifecycle.

Like the core agile development category, this category is also focused on

small, co-located teams delivering fairly straightforward systems. To address

the full delivery lifecycle you need to combine practices from several core

methods, or adopt a method which has already done so, and adopt a few

(egads!) “traditional” practices such as doing a bit of up-front requirements

and architecture modeling which have been tailored to reflect agile philoso-

phies to round out your overall software process.

3. Agility at Scale - This category focuses on disciplined agile delivery where

one or more scaling factors are applicable. The eight scaling factors are

team size, geographical distribution, regulatory compliance, organizational

complexity, technical complexity, organizational distribution, and enterprise

discipline. All of these scaling factors are ranges, and not all of them will

likely be applicable to any given project, so you need to be flexible when

scaling agile approaches to meet the needs of your unique situation. To

address these scaling factors you will need to tailor your disciplined agile

delivery practices and in some situations adopt a handful of new practices to

address the additional risks that you face at scale.

Fig 1. Overview of the Agile Scaling Model (ASM)

Highlights
The first step in scaling agile approaches is to move from partial methods to a

full-fledged, disciplined agile delivery process. Mainstream agile development

processes and practices, of which there are many, have certainly garnered a lot

of attention in recent years. They’ve motivated the IT community to pause and

consider new ways of working, and many organizations have adopted and been

successful with them. However, these mainstream strategies (such as Extreme

Programming (XP) or Scrum, which the ASM refers to as core agile develop-

ment strategies) are never sufficient on their own; as a result organizations must

combine and tailor them to address the full delivery lifecycle. When doing so the

smarter organizations also bring a bit more discipline to the table, even more so

than what is required by core agile processes themselves, to address governance

and risk.

The second step to scaling agile is to recognize your degree of complexity. A lot of

the mainstream agile advice is oriented towards small, co-located teams develop-

ing relatively straightforward systems. But once your team grows, or becomes

distributed, or you find yourself working on a system that isn’t so straightforward,

you find that the mainstream agile advice doesn’t work quite so well – at least not

without modification.

IBM Rational advocates disciplined agile delivery as the minimum that your

organization should consider if it wants to succeed with agile techniques. You

may not be there yet, still in the learning stages. But our experience is that you

will quickly discover how one or more of the scaling factors is applicable, and as a

result need to change the way you work. Let’s explore each of the ASM’s scaling

categories one at a time.

Core agile development
Core agile development methods focus on a portion of the overall delivery

lifecycle. Table 1 overviews several core agile methods, indicating the pur-

pose or scope of the method as well providing a list of representative prac-

tices (the practice lists are not meant to be complete). It’s interesting to note

that several practices are supported by one or more methods, an indication of

the compatibility between the methods. Disciplined agile delivery teams will

typically mine the core agile methods for practices and ideas which are then

combined to form a more robust process. Each method has its own unique

focus and approach, a specific process scope which it addresses, and uses its

own terminology (there is some overlap).

Adapting Agile Methods for Complex
Environments
Page 11

The first step in scaling agile

approaches is to move from partial

methods to a full-fledged, disciplined

agile delivery process. The second

step is to recognize your degree of

complexity.

Table 1. Core agile methods

Method Purpose/Scope Representative Practices

Agile Data (AD) AD is a collection of practices

which focuses on database

development [24].

•	 Agile Data Modeling

•	 Continuous Database Integration

•	 Database Refactoring

•	 Database Testing

Agile Modeling (AM) AM is a collection of practices

for light-weight modeling and

documentation [10].

•	 Active Stakeholder Participation

•	 Executable Specifications

•	 Iteration Modeling

•	 Prioritized Requirements (Ranked

Work Item List)

•	 Requirements Envisioning

Extreme Programming

(XP)

XP focuses on software

construction and requires

significant discipline on the

part of practitioners. XP is

often mined for construction

practices by Scrum teams

to address Scrum’s lack of

technical practices [25].

•	 Collective Ownership

•	 Continuous Integration

•	 Pair Programming

•	 Refactoring

•	 Test-First Design

•	 Whole Team

Feature Driven

Development (FDD)

FDD is a model-driven, short

iteration agile software delivery

process [26].

•	 Development By Feature

•	 Domain Object Modeling

•	 Feature Teams

•	 Individual Class Ownership

•	 Regular Build

Scrum Scrum focuses on project

leadership and scope

management. Scrum defines

a high-level lifecycle for

construction iterations and

a handful of supporting

practices [27].

•	 Product Backlog (Ranked Work

Item List)

•	 Scrum Meeting (Daily Stand-Up

Meeting)

•	 Sprint/Iteration Demo

•	 Retrospectives

Adapting Agile Methods for Complex
Environments
Page 12

Highlights
Scrum and XP are very popular within the mainstream agile community, in part

because they are what developers want to hear – developers are at the center,

working software is critical, bureaucracy is bad – and in part because they provide

developers with a sense of ownership of the process that they follow. The latter

is clearly a good thing, but these processes aren’t the only thing that developers

should be following. For example, AM isn’t as popular as other approaches; many

agilists like to downplay modeling and documentation, although it’s interesting

to note that the individual practices of AM often have very high adoption rates

within the agile community, often higher than some of the Scrum and XP prac-

tices.

Disciplined agile delivery
The consultants and developers who developed the manifesto did a good job;

the manifesto itself conveys a key idea we can apply at this point. As we read,

“At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.” Is it possible that we could improve

certain aspects of the manifesto, particularly as it relates to large scale projects?

The Agile Manifesto has a software development focus, yet software engineers

consider what they build, really, to be solutions. This might include commercial-

off-the-shelf (COTS) solutions that don’t get built at all, but rather configured and

integrated.

The Agile Manifesto also has a construction focus. It’s great that the core agile

approaches describe how to be effective at building software, but if stakehold-

ers don’t agree on what needs to be built then it doesn’t matter how streamlined

construction is. The fact that we’re building high quality software is great, but if

it doesn’t work with our existing infrastructure then it really isn’t much good to

us in practice. The fact that we’ve build potentially shippable software is great,

but if we can’t actually release it easily then it doesn’t really matter. Lean software

development [6], which complements agile strategies and in many ways explains

why they work, tells us to optimize the whole, not just the parts. From the point

of view of a single solution there is a little more to its lifecycle than construc-

tion. There are pre-construction activities, there are activities around deploying

a release into production, there are activities around operating and supporting

it once it’s in production, and even activities around retiring the system from

production.

Adapting Agile Methods for Complex
Environments
Page 13

It's great that the core agile

approaches describe how to be

effective at building software, but

if stakeholders don't agree on what

needs to be built then it doesn't

matter how streamlined construction

is. And if it doesn't work with

existing infrastructure, then it really

isn't much good in practice.

Highlights
The point is that we need to look beyond agile software development and

consider the full complexities of solution delivery. In fact, our experience is

that the first “scaling factor” that organizations face with agile development

is lifecycle scope. At IBM Rational we define disciplined agile delivery as:

Disciplined agile delivery is an evolutionary (iterative and incremental)
approach that regularly produces high quality solutions in a cost-effective
and timely manner via a risk and value driven lifecycle. It is performed
in a highly collaborative, disciplined, and self-organizing manner within
an appropriate governance framework, with active stakeholder partici-
pation to ensure that the team understands and addresses the chang-
ing needs of its stakeholders. Disciplined agile delivery teams provide
repeatable results by adopting just the right amount of ceremony for the
situation which they face.

Let’s explore the key differences with this definition over the previous defini-

tion:

1. Full delivery lifecycle - Disciplined agile delivery processes have life-

cycles that are serial in the large and iterative in the small. Minimally

they have a release rhythm that recognizes the need for start up/incep-

tion activities, construction activities, and deployment/transition activi-

ties. Better processes, which I’ll discuss shortly, include explicit phases

as well. It is very important to note that these are not the traditional

waterfall phases – requirements, analysis, design, and so on – but instead

different “seasons” of a project. In short, agile projects go through dif-

ferent phases in their life cycles, they are not just purely iterative.

2. Solutions, not just software - The term solution is far more robust, and

accurate, than the term software. Disciplined agile delivery teams pro-

duce solutions, a portion of which may be software, a portion of which

may be hardware, and a portion of which may be outside of the technical

domain such as the manual processes associated with working with the

system.

3. Risk and value driven lifecycle - Core agile processes are very clear

about the need to produce visible value in the form of working software

on a regular basis throughout the lifecycle. Disciplined agile delivery

processes take it one step further and actively mitigate risk early in the

lifecycle. For example, during project start up you should come to stake-

holder concurrence regarding the project’s scope, thereby reducing

Adapting Agile Methods for Complex
Environments
Page 14

We need to look beyond agile

software development and consider

the full complexities of solution

delivery.

Disciplined agile delivery is an evo-

lutionary (iterative and incremental)

approach that regularly produces high

quality solutions in a cost-effective

and timely manner via a risk and value

driven lifecycle.

Highlights
 significant business risk, and prove the architecture by building a work-

ing skeleton of your system, thereby significantly reducing technical

risk. They also help with transition to agile, allowing traditional fund-

ing models to use these milestones before moving to the finer grained

iteration-based funding that agile allows.

4. Self-organization within an appropriate governance framework - Self-

organization leads to more realistic plans and estimates more acceptable

to the people implementing them. At the same time these self-organiz-

ing teams must work within an “appropriate governance framework” that

reflects the needs of their overall organizational environment: such a

framework explicitly enables disciplined agile delivery teams to effec-

tively leverage a common infrastructure, to follow organizational conven-

tions, and to work toward organizational goals.

The point is that project teams, regardless of the delivery paradigm they are

following, need to work within the governance framework of their organization.

Effective governance programs should make it desirable to do so. Our experience

is that traditional, command-and-control approaches to governance, where senior

management explicitly tells teams what to do and how to do it, don’t work very

well with agile delivery teams. We’ve also found that a lean approach to govern-

ance based on collaboration and enablement is far more effective [7]. Good

governance increases the chance that agile delivery teams will build systems that

fit into your overall organizational environment, instead of yet another stand-alone

system that increases your overall maintenance burden and data quality problems.

Let’s explore why a full delivery lifecycle view is important. The Scrum

lifecycle, depicted in Figure 2, focuses on how to organize the work during

a construction sprint (in Scrum iterations are called sprints). This lifecycle

explicitly depicts several important agile practices – Ranked Work Item Lists

(Product Backlog, Sprint Backlog), Time-Boxed Iterations (Sprints), Daily

Stand Up Meeting (Daily Scrum Meeting), Retrospective, and Iteration Demo

(Sprint Review) – which Scrum has popularized within the agile community.

Adapting Agile Methods for Complex
Environments
Page 15

Project teams need to work within

the governance framework of their

organization. Effective governance

programs should make it desirable to

do so.

Adapting Agile Methods for Complex
Environments
Page 16

The Scrum lifecycle of Figure 2 isn’t sufficient to meet all of the needs of

software delivery teams, but it is an important foundation from which we can

develop a full delivery lifecycle. To see this, consider the disciplined agile

delivery lifecycle [8] of Figure 3. In addition to using sensible terminology,

for example nobody sprints through a ten kilometer race, this lifecycle

expands upon the Scrum construction lifecycle in three important ways:

1. Explicit project phases - The mainstream agile mantra is that agile

software development is iterative, but the disciplined strategy is to

recognize that agile delivery is really iterative in the small and serial in

the large [9]. What we mean by iterative in the small is that from the

point of view of your daily rhythm the work proceeds iteratively – each

day you’re likely to iterate back and forth between modeling, testing,

programming, and management activities (to name a few). Serial in

the large refers to the fact that your release rhythm proceeds through

different project phases: at the beginning you focus on initiation or

start-up activities, in the middle you focus on construction activities,

and in the end you focus on deployment activities. As shown in Figure

3, the agile system delivery lifecycle explicitly reflects this by including

the Inception phase. where you do some initial modeling, start putting

together your team, gain initial project funding, put together your work

Fig 2. Scrum construction lifecycle

Adapting Agile Methods for Complex
Environments
Page 17

 environment (including tools), and even do some initial development;

the Elaboration & Construction phases, where you build the system;

the Transition phase, where you harden your system and release it into

production (or the marketplace); and a Production phase where you

operate and support the system. Table 2 lists some of the agile methods

which explicitly include phases.

4. A full range of practices - The lifecycle illustrated in Figure 3 explicitly

includes, and in some cases implies, additional practices followed

by disciplined agile teams. This includes initial requirements and

architecture envisioning at the beginning of the project to increase the

chance of building the right product in the right manner as well as

system release practices.

5. More robust practices - A critical aspect of Figure 3 is that it explicitly

reworks the product backlog of Figure 2 into the more accurate concept

of a ranked work item list. Not only do agile delivery teams implement

functional requirements, they must also fix defects (found through

independent testing or by users of existing versions in production),

provide feedback on work from other teams, take training courses,

and so on. All of these activities need to be visible in the backlog

and planned for, not just functional and non-functional requirements.

Having a single work item stack, instead of several stacks (one for each

type of work item), proves easier to manage in practice.

Fig 3.Agile system delivery lifecycle

Adapting Agile Methods for Complex
Environments
Page 18

Table 2. Agile methods with distinct phases

Method Purpose/Scope Representative Practices

Agile Unified Process

(AUP)

AUP is available via open source (www.

ambysoft.com/unifiedprocess/agileUP.

html) as a collection of HTML pages, with

sparse descriptions written in point-form

and links to online articles which provide

greater detail. AUP combines and

extends practices from Scrum, XP, AM

and AD [28].

•	 Architecture Envisioning

•	 Continuous Integration

•	 Database Refactoring

•	 Ranked Work Item List

•	 Requirements

Envisioning

•	 Test-Driven

Development (TDD)

Agile With Discipline

(AWD)

This is the agile process, which they tailor

to meet the unique needs of individual

customers, followed by IBM’s Accelerated

Solution Delivery (ASD) practice. AWD

has adopted practices from Scrum, XP,

AM, Unified Process, and other processes

and has been evolved by the ASD team

over the years as they’ve applied it at

scale with customers around the world.

•	 Continuous Integration

•	 Development Standards

•	 Pair Programming

•	 Refactoring

•	 Reuse

•	 Risk-Value Lifecycle

•	 Test Driven

Development (TDD)

Eclipse Way This is the process followed by the people

working on Eclipse, an open source, Java-

based development platform developed

by hundreds of people world wide who

are working for dozens of organizations.

The “Eclipse project” is actually a

program of many project teams, each of

which are working on different Eclipse

components or plug-ins, and each of

which are often distributed themselves.

The core team follows a 6 week iteration

length, a reflection of the scale of the

team, although sub-teams are welcome

to adopt shorter iteration lengths as their

situation permits (it’s common to follow a

divisor, 1, 2 or 3 weeks although this is not

a requisite) [29].

•	 API First (Architecture

Envisioning)

•	 Burndown Tracking

•	 Component Centric

•	 Consume Your Own

Output

•	 Continuous Integration

•	 Continuous Testing

•	 Feature Teams

•	 Ranked Work Item List

Adapting Agile Methods for Complex
Environments
Page 19

Table 2. Agile methods with distinct phases (continued)

Method Purpose/Scope Representative Practices

IBM Rational Unified

Process (RUP)

RUP is a comprehensive process

framework for iterative software delivery

which can be instantiated anywhere from

a very agile form to a very traditional form

as your situation warrants [10, 11]. RUP

includes a plethora of practices which are

often described in detail, with supporting

templates, examples, and guidelines.

RUP one of several processes within

Rational Method Composer (RMC).

•	 Concurrent Testing

•	 Continuous Integration

•	 Continuous Testing

•	 Evolutionary Design

•	 Release Planning

•	 Risk-Value Lifecycle

•	 Shared Vision

•	 Test-Driven

Development (TDD)

Open Unified Process

(OpenUP)

OpenUP, the definition of which is

available via open source (www.eclipse.

org/epf/), combines and extends

practices from Scrum, XP, AM and IBM

Rational Unified Process (RUP) for small,

co-located agile teams which are building

business applications. OpenUP practices

are described briefly with prose but

often backed up with detailed guidelines

for anyone needing more information.

OpenUP is the sweet spot between

AUP’s sparse description and RUP’s

comprehensive description [11].

•	 Active Stakeholder

Participation

•	 Continuous Integration

•	 Daily Standup Meeting

•	 Ranked Work Item List

•	 Risk-Value Lifecycle

•	 Test-Driven

Development (TDD)

•	 Whole Team

Disciplined agile project teams take the realities of the full system delivery

lifecycle into account, not just the “fun stuff” encompassed by the much smaller

construction lifecycle. This is important because it helps to make the complexi-

ties of software development and delivery explicit to everyone involved. The work

required to get a project started is important, can be difficult, and it will often be

several weeks before get funding for the construction effort. The agile construc-

tion effort itself is more difficult than we are led to believe, let alone the chal-

lenges of releasing software into production (there’s usually a bit more to it than

copying a few files onto a server). Finally, disciplined lifecycles explicitly include a

production phase because not only are operations and support staff important

Adapting Agile Methods for Complex
Environments
Page 20

Highlights
project stakeholders they will often be the source of requirements changes (in the

form of enhancement requests and defect reports) throughout the project. Infor-

mation Technology Infrastructure Library (ITIL) [12], and IBM Tivoli Unified

Process (ITUP) [13] which is based on ITIL, are excellent sources of information

pertaining to Production phase activities.

Many organizations will develop their own disciplined agile delivery process(es)

by combining Scrum, practices from XP, and (sometimes unknowingly) practices

from other processes such as AM, AD, and FDD. This strategy works, although

it can be expensive and time consuming compared to starting with a full disci-

plined agile delivery process. I’ve performed agile process assessments in dozens

of organizations around the world, and whenever I’ve run into a team claiming to

be following Scrum I’ve found invariably that they’ve developed a lifecycle very

close to what is shown in Figure 3 and sometimes written extensive supporting

process material to flesh it out. Even though these organizations had done a good

job building their own processes from scratch, many of them recognized that

they had wasted significant time and money by doing so; they would have greatly

benefited by starting with an existing, more disciplined process.

Agility at Scale
In the early days of agile, projects managed via agile development techniques

were small in scope and relatively straightforward. The small, co-located

team strategies of mainstream agile processes still get the job done in these

situations. Today, the picture has changed significantly and organizations

want to apply agile development to a broader set of projects. They are dealing

with problems which require large teams; they want to leverage a distrib-

uted work force; they want to partner with other organizations; they need to

comply with regulations and industry standards; they have significant techni-

cal or cultural environmental issues to overcome; and they want to go beyond

the single-system mindset and truly consider cross-system enterprise issues

effectively. Not every project team faces all of these scaling factors, nor do

they face each scaling factor to the same extent, but all of these issues add

complexity to your situation and you must find strategies to overcome these

challenges. To deal with the many business, organization, and technical

complexities your development organization is facing, your disciplined agile

delivery process needs to adapt.

Many organizations will develop

their own disciplined agile delivery

process(es) by combining Scrum,

practices from XP, and (sometimes

unknowingly) practices from other

processes such as AM, AD, and FDD.

This strategy works, although it can

be expensive and time consuming.

Adapting Agile Methods for Complex
Environments
Page 21

In addition to scaling your lifecycle to address the full range of needs for

solution delivery, there are eight more scaling factors that may be applicable.

Figure 4 illustrates these scaling factors, explicitly showing that each one

represents a range of possibilities, from simple to complex: For each factor

the simplest situation is on the left-hand side and the most complex situation

on the right-hand side. When a project team finds that all seven factors are

close to the left (simple), then their project can be managed in a disciplined

agile delivery mode. But when one or more scaling factors moves to the right,

they are in an agility at scale situation.

Fig 4.Potential scaling factors for disciplined agile delivery

Adapting Agile Methods for Complex
Environments
Page 22

Highlights
The eight scaling factors are:

1. Team size - Mainstream agile processes work very well for smaller

teams of ten to fifteen people (any process often works for such teams),

but what if the team is much larger? What if it’s fifty people? One

hundred people? One thousand people? As your team-size grows the

communication risks increase and coordination becomes more difficult.

The paper-based, face-to-face strategies of core agile methods start to

fall apart.

2. Geographical distribution - What happens when the team is distributed

— perhaps on floors within the same building, different locations within

the same city, or even in different countries? What happens if you

allow some of your engineers to work from home? What happens when

you have team members in different time zones? Suddenly, effective

collaboration becomes more challenging and disconnects are more

likely to occur.

3. Regulatory compliance - What if regulatory issues – such as Sarbanes

Oxley, ISO 9000, or FDA CFR 21 – are applicable? These mandates

bring requirements of their own, often imposed from outside your

organization in addition to the customer-driven product requirements.

There is an increase in the complexity faced by your project team

because they must interpret the regulations, which typically describe

goals but do not prescribe specific strategies for achieving those goals,

and then conform to those regulations appropriately. This may mean

that they have to increase the formality of the work that they do and the

artifacts that they create.

4. Domain complexity - Some project teams find themselves addressing

a very straightforward problem, such as developing a data entry

application or an informational Web site. Sometimes the problem

domain is more intricate, such as the need to monitor a bio-chemical

process or air traffic control. Or perhaps the situation is changing

quickly, such as financial derivatives trading or electronic security

assurance. Philippe Kruchten [32] argues that the rate of change

within the domain, the criticality of the system, and the business

model are critical contextual factors that affect your software process.

More complex domains require greater emphasis on exploration

and experimentation, including — but not limited to — prototyping,

modeling, and simulation.

Not every project team faces all of

these scaling factors, nor do they

face each scaling factor to the same

extent, but all of these issues add

complexity to your situation and you

must find strategies to overcome

these challenges.

Adapting Agile Methods for Complex
Environments
Page 23

5. Organizational distribution - Sometimes a project team includes

members from different divisions, different partner companies, or

from external services firms. The more organizationally distributed

teams are, the more likely the relationship will be contractual in

nature instead of collaborative. For example, in some projects people

contributing to requirements, architecture, design, code are actually

kept in the dark about the real product for security reasons and cannot

even get network access to execute tests on their own work. A lack of

organizational cohesion can greatly increase risk to your project due to

lack of trust, thereby reducing willingness to collaborate, and may even

increase the risks associated with ownership of intellectual property

(IP). Many organizations are struggling to rethink their procurement

processes and contracts to better build the trust required for successful

system delivery within an organizationally distributed environment.

6. Technical complexity - Some applications are more complex than others.

It’s fairly straightforward to achieve high-levels of quality if you’re

building a new system from scratch, but not so easy if you’re working

with existing legacy systems and legacy data sources that are less than

perfect. It’s straightforward to build a system using a single platform,

but not so easy if you’re building a system running on several platforms

or built using several disparate technologies. Sometimes the nature of

the problem your team is trying to solve is very complex in its own right,

requiring a complex solution.

7. Organizational complexity - Your existing organization structure and

culture may reflect waterfall10 values, increasing the complexity of

adopting and scaling agile strategies within your organization. To

make matters worse, different subgroups within your organization

may have different visions for how they should work. Individually the

strategies can be quite effective, but as a whole they simply don’t align

in a common direction. This can dramatically increase the risk to your

project because there can be significant overlap in effort, including some

work that negates the efforts being performed in parallel by others.

8. Enterprise discipline - Most organizations want to leverage common

infrastructure platforms to lower cost, reduce time to market, improve

consistency, and promote a sustainable pace. This can be very difficult

if your project teams focus only on their immediate needs. To leverage

common infrastructure, project teams need to take advantage of

effective enterprise architecture, enterprise business modeling, strategic

Highlights

To deal with the many business,

organization, and technical

complexities your development

organization is facing, your

disciplined agile delivery process

needs to adapt.

Adapting Agile Methods for Complex
Environments
Page 24

 reuse, and portfolio management disciplines. These disciplines must

work in concert with, and better yet enhance, your disciplined agile

delivery processes. But this doesn’t come free. Your agile development

teams need to include as stakeholders enterprise professionals -- such

as enterprise architects and reuse engineers -- if not development team

members in their own right. The enterprise professionals will also

need to learn to work in an agile manner, a manner which may be very

different compared to the way that they work with more traditional

teams.

It is critical to recognize that each scaling factor represents a range of com-

plexities, and that each project team will face a different combination of these

complexities. The implication is that they will need to tailor the practices and

tools that they adopt to reflect the realities of the situation in which they find

themselves in. The first four scaling factors listed – team size, geographical

distribution, regulatory compliance, and organizational distribution – are relatively

straightforward to address via disciplined work, adoption of appropriate technol-

ogy, and tailoring of practices to reflect the realities of each scaling factor. The

other four scaling factors – domain complexity, technical complexity, organiza-

tional complexity, and enterprise discipline – are more difficult to address because

environmental complexity often reflects systemic challenges within your organiza-

tion and enterprise discipline requires a level of maturity that many organizations

struggle to achieve (although most desire such discipline).

Addressing scaling factors such as team size, geographical distribution, regula-

tory compliance, and organizational distribution is fairly straightforward with

disciplined practices, integrated tooling, and appropriate team structures. Organi-

zational complexities can be far more difficult to overcome because many of

them are cultural or systemic in nature, requiring years of concerted effort to

overcome. Particularly challenging cultural issues include, but are not limited to,

a serial/waterfall mentality among practitioners, the desire by the business to have

accurate estimates and schedules early in the project, over specialization of staff,

distrust between groups, and a poor relationship between IT and the business.

Technical complexities such as poor quality data sources, poor quality legacy code,

legacy code and data sources without corresponding regression test suites, and

highly coupled systems can also be challenging to address. Many of these techni-

cal debt issues can be paid down in part through refactoring, both code refactor-

ing [14] and database refactoring [15], and investment over time in building up

Highlights

Scaling Factors vs. Complexity Factors
Team size, geographical distribution,
organizational distribution, and
enterprise discipline are typically seen as
scaling factors. Regulatory compliance,
technical complexity, and organizational
complexity are often considered
complexity factors, and they are from
the point of view of a project team. But
when you look at things from the point of
view of adopting agile strategies across
an organization, they’re arguably scaling
factors. So, I could either use two terms
to describe these two categories or I
could simplify things and use a single,
albeit imperfect although still “good
enough” term. The agile strategy is to
favor simplicity over perfection, so I’ve
chosen to use the single term “scaling
factor” to represent both concepts.

Adapting Agile Methods for Complex
Environments
Page 25

regression test suites. Continuous integration [30], supported by tools such as IBM

Rational Automation Framework, can dramatically help you to improve quality by

identifying defects earlier in the lifecycle. Environment issues can be identified

via the assessment activities within Measured Capability Improvement Framework

(MCIF) [16], through self assessment via IBM Rational Self Check, or through

automated real-time reporting via IBM Rational Insight, and then addressed

through systematic improvement efforts.

Enterprise disciplines, such as enterprise architecture (both business and techni-

cal), strategic reuse, portfolio management, human resources, and enterprise

administration, can also be challenging to address. The Enterprise Unified Proc-

ess (EUP) [17] describes how to extend the Unified Process to address enterprise

disciplines, although its advice can be applied to any disciplined agile process.

Another source of information is Information Technology Infrastructure Library

(ITIL). ITIL covers many great techniques, although they are often described in

a very heavy and traditional manner; consider mining it for ideas but don’t follow

ITIL’s prescriptions to the letter.

Implications of ASM
When I work with organizations around the world to help them understand how

to apply the ASM, I often run into several issues. Everyone is interested in the

implications for both their process and tooling, particularly when they’ve had pre-

vious experiences trying to scale agile techniques. Many organizations, particu-

larly the ones who believe that their existing processes are already “mature,” will

struggle with the concept of repeatable results. Organizations that have experi-

ence with IBM Rational Unified Process (RUP) always want to know whether RUP

can be agile (of course it can). In this section I address these three issues.

ASM and agile practices
The ASM promotes two strategies for tailoring agile development and delivery

techniques to meet the challenges of solution delivery at scale. The first strategy

is to tailor mainstream agile practices. For example, Scrum’s Product Backlog

practice can be evolved into Ranked Work Item List to address the challenges of

scaling to a full delivery lifecycle [18]. A product backlog is a prioritized list of

requirements that an agile project team will implement over time, a very good

idea. Yet project teams also need to address defects, team members will be asked

to review the work of other teams, team members will go on training, and so on.

Highlights

I often run into several issues.

Everyone is interested in the

implications for both their process

and tooling, particularly when they've

had previous experiences trying to

scale agile techniques.

Adapting Agile Methods for Complex
Environments
Page 26

All of these activities are important work items, just as implementing a require-

ment is an important work item, which much be planned for and then addressed

accordingly. So, to reflect the needs of the full delivery lifecycle you really need a

ranked work item list, not just a product backlog of requirements.

Consider the practice of holding a Daily Stand Up Meeting. With a small, co-

located team, it is fairly straightforward to get everyone together to share their

status and identify potential problems that they face. At scale you can follow the

same fundamental practice, holding a daily coordination meeting, but you need

to tailor it accordingly. For example, large teams will often focus on identifying

potential problems instead of focusing on the time-consuming status informa-

tion that Scrum prescribes, or they’ll hold sub-team stand-up meetings and then

another overall coordination meeting (e.g. “Scrum of Scrums”). Very often, these

sub-teams will simply update a common wiki, teamroom, or database with the

results of their stand up meeting. Geographically distributed teams will need

to involve electronic tools, even if it’s simply a telephone, to aid in coordination.

Teams in regulatory situations may need to record the results of the daily stand

up meeting.

The second strategy is to adopt new practices as needed.11 For example, large

or geographically distributed teams will follow organizational practices, such as

organizing themselves as a collection of feature teams, or as a collection of com-

ponent teams, or in some cases as a combination of the two strategies. Teams in

regulatory situations may need to adopt practices around formal documentation.

ASM and tooling
ASM makes it very explicit that different project teams face different situations.

This is an important point. Different situations require a different combination

of tools, the implication being that individual project teams will have their own

unique tooling environments. Your organization’s tool support team will need to

deal with a variety of tooling combinations, which presents its own challenges in

turn. For small, co-located agile teams developing a relatively straightforward

system (in other words, teams who are in a disciplined agile delivery situation),

the tooling strategy can be fairly simple. Stand-alone development tools are often

sufficient, although integrated tools are clearly beneficial: manual tools such

as whiteboards and index cards for modeling and planning typically work well.

However, when you find yourself in an agility at scale situation and one or more

scaling factors apply, then you need to change your strategy. Table 3 describes

Highlights

Adopt new practices as needed.

Large or geographically distributed

teams organize themselves as a

collection of feature teams, or as

a collection of component teams.

Teams in regulatory situations may

need to adopt practices around

formal documentation.

Adapting Agile Methods for Complex
Environments
Page 27

how each of the scaling factors can affect your tooling strategy, and suggests some

IBM products that you may want to consider to enable you to address these factors

effectively. Table 3 is meant to be suggestive, not definitive: Because tool selection

is situational you may also find that other IBM products are applicable.

Table 3. Relating the scaling factors to tooling capability

Scaling

Factor

Tooling Implications Potential Tools

Team Size •	 Greater integration, particularly around

information sharing

•	 Automated metrics collection to enable

effective governance

•	 Electronic modeling and planning tools

required to share information amongst

subteams

•	 IBM Rational Team Concert

•	 IBM Rational Insight

•	 IBM Rational Project

Composer

•	 IBM Rational Requirements

Composer

•	 IBM Rational Build Forge

Geographic

Distribution

•	 Greater integration, particularly around

information sharing

•	 Automated metrics collection to enable

effective governance

•	 Electronic modeling and planning tools

required to share information across

locations

•	 IBM Rational Team Concert

•	 IBM Rational Insight

•	 IBM Rational Project

Composer

•	 IBM Rational Requirements

Composer

•	 IBM Rational Build Forge

Regulatory

Compliance

•	 Tools should automate compliance as

much as possible

•	 Tools should support process

enablement to ensure that people

comply to critical processes

•	 Automated metrics collection to enable

effective governance and provide

required reporting

•	 Electronic modeling and planning tools

required to create permanent record

•	 IBM Rational Team Concert

•	 IBM Rational Insight

•	 IBM Rational Build Forge

Adapting Agile Methods for Complex
Environments
Page 28

Table 3. Relating the scaling factors to tooling capability (continued)

Scaling

Factor

Tooling Implications Potential Tools

Organizational

Distribution

•	 Automated quality assessment tools,

such as static and dynamic code

analysis tools

•	 Automated metrics collection to enable

effective governance

•	 Security control required governing

access to project information, including

source code

•	 IBM Rational Team Concert

•	 IBM Rational Insight

•	 IBM Rational Software

Analyzer

•	 IBM Rational AppScan

Technical

Complexity

•	 Code and schema visualization tools to

understand legacy assets

•	 Enterprise modernization tools to

reduce technical complexity

•	 Multi-platform development tools often

required

•	 IBM Rational Team Concert

for Z-series

•	 IBM Optim Datastudio

Domain

Complexity

•	 Modeling tools to explore the problem

domain

•	 Development tools to manage the

project assets

•	 IBM Rational Requirements

Composer

•	 IBM Optim Datastudio

Organizational

Complexity

•	 Different organizational groups may

have different tooling preferences, but

may still share assets between teams

Enterprise

Discipline

•	 Project-level tools should co-exist,

if not integrate with, enterprise-level

tools (e.g. your system/application

architecture modeling tool works with

your enterprise architecture modeling

tool)

•	 IBM Rational Insight

•	 IBM Rational Focal Point

•	 IBM Rational Asset Manager

•	 IBM Rational System

Architect

•	 IBM Infosphere Data

Architect

Adapting Agile Methods for Complex
Environments
Page 29

Highlights
There are two important implications for agile delivery teams. First, it is

critical that teams focus on creating value rather than choosing the latest

tools to enhance individual team members’ resumes. Although different

tools may be used based on the scaling profile of the project, the selection of

tools to choose from should be pre-defined where appropriate. Second, each

delivery team, even when they are small and co-located, must recognize that

they are in effect part of a system of systems environment and therefore need

to radiate information to a wider community. In short, some tooling beyond

the team’s local needs may still be necessary to support this reality.

Repeatable results over repeatable processes
The definition of disciplined agile delivery indicates that disciplined agile teams

focus on producing repeatable results, such as delivering high-quality software

which meets stakeholder needs in a timely and cost effective manner. It doesn’t

indicate that disciplined agile delivery teams should follow repeatable processes.

The difference is that because each team finds themselves in a unique situation,

to be most efficient they need to follow a unique process. That “unique process”

may be comprised of a relatively standard lifecycle and common practices such as

architecture envisioning, database regression testing, non-solo development, and

many others (granted, those practices may be tailored to reflect the situation too).

The point is that each team in your organization may follow a different process,

albeit processes which share similar components defined by a common process

framework, while achieving the results required of them.

The danger with “repeatable processes” is that they grow in size over the years

to address all possible situations, and as a result address none of them very well.

Imagine a project team that found itself in an agility at scale situation because it

was fairly large, and had regulatory compliance concerns. The team tailored its

practices to meet their needs, and they were successful doing so. Then another

project team came along and found itself in a smaller-scale, disciplined agile

delivery situation. An organization focused on repeatable processes might have

that team follow the same process that the previous team followed, even though

some of the practices had been tailored to meet scaling factors that don’t apply.

In other words, the repeatable process included some aspects that were overkill

for the new team, thereby impacting their ability to deliver in a timely manner

or in a cost efficient manner. In the vast majority of organizations, when given

the choice, stakeholders prefer to spend the money wisely and have the solution

delivered in a timely manner, not to have the team follow a consistently “repeat-

able process.”

It is critical that teams focus on

creating value rather than choosing

the latest tools to enhance individual

team members' resumes.

Agile teams focus on producing

repeatable results, such as delivering

high-quality software which meets

stakeholder needs in a timely and cost

effective manner.

Adapting Agile Methods for
Complex Environments
Page 30

Highlights
There’s nothing wrong with documenting a standard process framework

(just keep it as light as possible) but that doesn’t mean it is supposed to

be slavishly followed. Instead, think of it as a baseline for adaptation and

continuous improvement. This is particularly true if you have project

teams in widely varying situations because there is no possible way you

could define a single “repeatable process” that effectively meets the needs

of all of your project teams. In general, if a team is in a disciplined agile

delivery situation, then strategies tailored to address one or more of the

scaling factors will prove to be more than they need. Similarly, if they’re in

situation where one or more scaling factors apply, then strategies for small,

co-located teams in straightforward will likely prove insufficient. This may

explain why some organizations run into trouble with agile approaches;

they’re following agile advice that might be appropriate in simple situations

even though it doesn’t make sense to do so in their situation.

ASM and RUP
The Rational Unified Process (RUP) is an example of an iterative delivery proc-

ess meant to be tailored to meet the needs of your situation. Sometimes it is

tailored to be very heavy and bureaucratic, which I don’t recommend doing, and

sometimes it is tailored to be very streamlined and agile. For years, IBM Rational

has said that RUP done right is agile. RUP is full lifecycle and strives to address

many of the scaling factors described in this paper. However, at the time of this

writing, from the point of view of the ASM there are four challenges that RUP

still needs to address:

1. RUP strives for a common process framework that you tailor, but ASM pro-

motes common practices that you tailor instead. Having a number of smaller,

cohesive practices to work with appears to be easier in practice for organiza-

tions that are attempting to improve their IT processes. The good news is

that RUP is moving in this direction with recent releases of Rational Method

Composer (RMC).

2. RUP implicitly targeted many complexity factors, such as team size, geo-

graphical distribution, regulatory compliance and environmental complexity,

but it does not explicitly indicate where these factors are specifically targeted.

This has resulted in guidance that is tough to understand for people who are

not process experts. The question: “What parts of RUP are required for my

project?” is one that RUP adopters often struggle with. Unfortunately, due

to the first point above, many organizations try to come up with one process

solution answer for all teams, which increases overall risk.

There's nothing wrong with

documenting a standard process

framework (just keep it as light as

possible) but that doesn't mean it is

supposed to be slavishly followed.

Adapting Agile Methods for
Complex Environments
Page 31

Highlights
3. RUP has become bloated from trying to address multiple complexity

factors in a generic way. The introduction of RMC has helped.

RUP is one part of the process materials included in RMC’s process

repository, allowing people to assemble practices for a specific project.

However, RUP had fifteen years to grow before this and contains many

recommendations that make sense only when a team needs to address a

specific scaling factor. Once again, no guidance explicitly states this.

4. RUP’s “scale it down” approach was too much for many organizations.

This strategy required you to understand the entire process library

before you could effectively cut it down to size – a daunting

requirement. The agile approach is to “scale up” your process to meet

the needs of your situation. Start with something small and valuable,

reflect on your experiences, and modify your strategy accordingly.

The implication is that you need to be experienced enough to identify

potential process improvements, or be willing to experiment with

various strategies, until you find what works best for you. More likely

what’s required is a combination of the two.

The bottom line is that RUP is a great resource that I highly recommend, but

please use it knowing that our overall process offerings are still evolving and will

continue to do so overtime. Don’t let people’s bad experiences with inappropriately

heavy tailorings of RUP blind you to the value presented by the RMC process

repository.

Become as agile as you can be
Many organizations have been successful at adopting agile software development

approaches [1, 2], in part because most of the focus up to now has been on pilot

projects that prove the approach, or on a handful of projects within an organiza-

tion. However, successful process improvement across an entire organization can

prove difficult in practice, often because casting a wider net confronts a wider

range of challenges. At IBM Rational we’ve found that the following strategies can

help you to increase your chances of success at improving your software process:

1. The goal is to get better, not to become agile - Considering that the focus of

this paper is on successfully adopting agile strategies, I realize this advice

sounds contradictory. But nobody is going to give you a little gold star for

being agile. They might, however, reward you for becoming more effective

at system delivery. While agile techniques can help with this, we need to

remember that there are still some pretty good ideas out there in the tradi-

tional community too.

Successful process improvement

across an entire organization can

prove difficult in practice, often

because you confront a wider range

of challenges. At IBM Rational

we've found strategies that help you

increase your chances of success.

Adapting Agile Methods for
Complex Environments
Page 32

Highlights
2. Have a continuous improvement plan - For your continuous

improvement efforts to be successful, you first need to identify your

business goals and set priorities. IBM Rational offers an approach for

continuous improvement, called Measured Capability Improvement

Framework (MCIF), which helps organizations improve their software

and systems delivery in order to increase revenue and lower costs. MCIF

applies Rational capabilities, best practices and services to improve

software and systems delivery. IBM Health Assessment can help you

achieve those goals. IBM Health Assessment helps you navigate and

select the right subset of practices, define your current capability (an

"as-is" measure), a target capability improvement (a "to-be" measure),

and aligns you to a roadmap for you to get from where you are today

to your target improvement with measurable feedback all along the

route. MCIF is intended to resolve the two predominant failure patterns

of past process improvement initiatives: 1) self-inflicting too much

process (rather than a subset of incremental practices), and 2) employing

subjective rather than objective measures of progress.

3. Gain some experience - Adopt agile approaches on one or more medium-

risk pilot project(s) to gain both organizational experience and to build

expertise within your staff. It’s important to expect to run into a few

problems because pilot projects never go perfectly.

4. Explicitly manage your process improvement efforts - It’s fairly easy

to succeed at a handful of pilot projects; it’s a bit more difficult to

permanently adopt meaningful process improvements across your

IT organization. A common agile strategy is for a team to regularly

reflect on their approach to identify potential improvements, and then

hopefully act on those improvements. Within IBM, we’ve found that

teams who explicitly track their progress at adopting improvements are

more successful than those who don’t. MCIF includes tooling called

IBM SelfCheck which helps teams do exactly this [19].

5. Invest in your staff - You need to train, educate, and mentor your staff

in agile philosophies, processes, practices, and tooling. Focus on the

people involved with the pilots at first and train them on a just-in-time

(JIT) basis. Don’t forget senior management, project management, and

anyone interfacing with the pilot team because they need to change

the way that they work too. Delivery teams exist within a larger IT

ecosystem, the implication being that this wider ecosystem will also

need to evolve to reflect the realities of disciplined agile delivery at

scale.

For your continuous improvement

efforts to be successful, you first

need to identify your business goals

and set priorities.

Adapting Agile Methods for
Complex Environments
Page 33

Highlights
Parting Thoughts
The first step to scaling agile strategies is to adopt a disciplined agile delivery

lifecycle which scales mainstream agile construction strategies to address the

full delivery process, from project initiation to deployment into production. The

second step is to recognize which scaling factors, if any, are applicable to a project

team, then tailor your adopted strategies accordingly to address the range of com-

plexities with the team faces. The scaling factors are:

1. Team size

2. Geographical distribution

3. Regulatory compliance

4. Organizational distribution

5. Technical complexity

6. Domain complexity

7. Organizational complexity

8. Enterprise discipline

At IBM we’ve found that many customers find the agile message confusing, in

part because of the multitude of voices within the agile community, but moreso

because much of the mainstream agile rhetoric often seems to ignore or gloss over

many important issues that our customers face on a daily basis. The Agile Scal-

ing Model provides a roadmap for understanding the complexities which you face

when adopting and tailoring agile strategies.

Acknowledgements
I’d like to thank Robert Begg, Anthony Crain, Paul Gorans, Tony Grout, Chris

Kolde, Paul Sims, Mike Perrow, and Lynn Thompson for their feedback which

was incorporated into this white paper.

About the Author
Scott W. Ambler is Chief Methodologist/Agile with IBM Rational and works with

IBM customers around the world to improve their software processes. He is

the founder of the Agile Modeling (AM), Agile Data (AD), Agile Unified Proc-

ess (AUP), and Enterprise Unified Process (EUP) methodologies. Scott is the

(co-)author of 19 books, including Refactoring Databases, Agile Modeling, Agile
Database Techniques, The Object Primer 3rd Edition, and The Enterprise Unified
Process. Scott is a senior contributing editor with Information Week. His personal

home page is www.ibm.com/software/rational/leadership/leaders/#scott and his

Agile at Scale blog is www.ibm.com/developerworks/blogs/page/ambler.

The Agile Scaling Model provides

a roadmap for understanding

the complexities which you face

when adopting and tailoring agile

strategies.

Adapting Agile Methods for
Complex Environments
Page 34

References

1. Dr. Dobb’s Journal’s July 2009 State of the IT Union Survey - www.ambysoft.com/surveys/state-
OfITUnion200907.html

2. Dr. Dobb’s Journal’s 2008 Project Success Survey - www.ambysoft.com/surveys/success2008.
html

3. Agile Manifesto - www.agilemanifesto.org
4. Principles Behind the Agile Manifesto - www.agilemanifesto.org/principles.html
5. Dr. Dobb’s Journal’s 2008 Modeling and Documentation Survey - www.ambysoft.com/surveys/

modelingDocumentation2008.html
6. Poppendieck, M. and Poppendieck, T. (2006). Implementing Lean Software Development: From

Concept to Cash. Boston: Addison Wesley.
7. Ambler, S.W. & Kroll, P. (2007). Lean Development Governance - https://www.software.ibm.com/

webapp/iwm/web/preLogin.do?lang=en_US&source=swg-ldg
8. Ambler, S.W. (2005). The Agile System Development Lifecycle (SDLC) - www.ambysoft.com/

essays/agileLifecycle.html
9. Ambler, S.W. (2004). The Object Primer 3rd Edition: Agile Model Driven Development with UML

2.0. New York: Cambridge University Press.
10. Ambler, S.W. (2002). Agile Modeling: Effective Practices for Extreme Programming and the Uni-

fied Process. New York: Wiley Press.
11. Kroll, P. and MacIsaac, B. (2006). Agility and Discipline Made Easy: Practices from OpenUP and

RUP. Boston: Addison-Wesley.
12. Information Technology Infrastructure Library (ITIL) Official Site. www.itil-officialsite.com
13. IBM Tivoli Unified Process (ITUP) - www.ibm.com/software/tivoli/governance/servicemanagement/

itup/tool.html
14. Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Menlo Park, CA: Addison-

Wesley Longman.
15. Ambler, S.W. and Sadalage P.J. (2006). Refactoring Databases: Evolutionary Database Design.

Upper Saddle River, NJ: Addison Wesley.
16. Measured Capability Improvement Framework (MCIF) - www.ibm.com/software/rational/mcif/
17. Ambler, S.W., Nalbone, J., and Vizdos, M. (2004). The Enterprise Unified Process: Enhancing the

Rational Unified Process. Boston: Addison Wesley
18. Ambler, S.W. (2009). Product Backlogs at Scale. www.ddj.com/architect/217701202
19. Kroll, P. and Krebs, W. (2008). Introducing IBM Rational Self Check for Software Teams - www.

ibm.com/developerworks/rational/library/edge/08/may08/kroll_krebs/index.html
20. Stober, T. and Hansmann, W. (2010). Agile Software Development: Best Practices for Large

Software Development Projects. New York: Springer Publishing.
21. Larman, C. and Vodde, B. (2009). Scaling Lean & Agile Development: Thinking and Organiza-

tional Tools for Large-Scale Scrum. Upper Saddle River, NJ: Addison Wesley.
22. Kessler, C. & Sweitzer, J. (2007). Outside-In Software Development: A Practical Approach to

Building Stakeholder-Based Products. IBM Press.
23. Pixton, P., Nickolaisen, N., Little, T., and McDonald, K. (2009). Stand Back and Deliver: Accelerat-

ing Business Agility. Upper Saddle River, NJ: Addison Wesley.
24. Ambler, S.W. (2004). Agile Database Techniques: Effective Strategies for the Agile Development.

New York: Wiley Publishing.
25. Beck, K. (2000). Extreme Programming Explained—Embrace Change. Reading, MA: Addison

Wesley Longman, Inc.
26. Palmer, S. R., and Felsing, J. M. (2002). A Practical Guide to Feature-Driven Development. Upper

Saddle River, NJ: Prentice Hall PTR.
27. Beedle, M. & Schwaber, K. (2001). Agile Software Development With SCRUM. Upper Saddle

River, New Jersey: Prentice Hall, Inc.
28. Ambler, S.W. (2005). The Agile Unified Process - www.ambysoft.com/unifiedprocess/agileUP.html
29. Velzen, T. (2008). Skillful and Maneuverable: OpenUP and the Eclipse Way - www.ibm.com/

developerworks/rational/library/edge/08/jul08/vanVelzen/
30. Duvall, P. and Matyas, S. (2007). Continuous Integration: Improving Software Quality and Reduc-

ing Risk. Upper Saddle River, NJ: Addison Wesley.
31. Ambler, S.W. (2007). The discipline of agile. Dr. Dobb’s Journal, October 2007 - http://www.ddj.

com/architect/201804241
32. Kruchten, P. (2009). The Context of Software Development - http://pkruchten.wordpress.

com/2009/07/22/the-context-of-software-development/

© Copyright IBM Corporation 2009

IBM Corporation

Software Group

Route 100

Somers, NY 10589

U.S.A.

Produced in the United States of America

December 2009

All Rights Reserved

IBM, the IBM logo, ibm.com and Rational are

trademarks or registered trademarks of International

Business Machines Corporation in the United States,

other countries, or both. Other company, product, or

service names may be trademarks of IBM or other

companies.

A current list of IBM trademarks is available on the

Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml

The information contained in this document is

provided for informational purposes only. While

efforts were made to verify the completeness

and accuracy of the information contained in this

documentation, it is provided “as is” without warranty

of any kind, express or implied.

RAW14204-USEN-00

Footnotes

1 Throughout this paper the term process shall also include the terms “method” and “methodology.”
These terms are used interchangeably within the IT industry and for the sake of simplicity I have chosen
to use the term “process.”

2 This difference is discussed in, for example, Stober, T. and Hansmann, W. (2010). Agile Software
Development: Best Practices for Large Software Development Projects. New York: Springer Publishing,
and in Larman, C. and Vodde, B. (2009). Scaling Lean & Agile Development: Thinking and Organiza-
tional Tools for Large-Scale Scrum. Upper Saddle River, NJ: Addison Wesley.

3 For a more detailed discussion of the Agile Manifesto, see “Examining the Agile Manifesto” at www.
ambysoft.com/essays/agileManifesto.html

4 Internally within IBM we use the more succinct “Agile is the use of continuous stakeholder feedback to
produce high-quality consumable code through user stories (or use cases) and a series of short time-
boxed iterations.” This definition isn’t as comprehensive, but instead focuses on several aspects which
are critical within our corporate culture and assumes, rightly or wrongly, that people will pick up the rest
over time.

5 The Dr. Dobb’s Journal 2008 Project Success survey found that agile teams are in fact more likely to
deliver good ROI than traditional teams and more likely to deliver in a timely manner.

6 Scrum is a form of agile development that includes sets of practices and pre-defined roles for team
members. Work is broken into sprints of several weeks’ duration, in which working software is created
and improved until project completion. See http://www.controlchaos.com/ for more information.

7 Extreme Programming, or XP, is a form of agile development designed to quickly respond to changing
customer requirements. It stresses programming in pairs of developers, frequent and extensive code
review and testing, and a flat project management structure.

8 Regression testing, essentially, tests whether changes to existing software have introduced new prob-
lems.

9 Core agile methods such as Extreme Programming (XP) and Scrum require significant discipline for
their practitioners to be successful. However, the methods themselves on their own don’t encompass the
full range of discipline required for full system delivery. Disciplined agile delivery methods encompass a
broader view, acknowledging the greater complexities a particular team may be faced with, and hence
require greater business and technical discipline than core agile methods.

10 “Waterfall” development methods emphasize detailed up-front planning and rigid sequential phases,
much like traditional engineering disciplines. In software projects, this approach typically leads to late
design changes and, consequently, excessive scrap and rework.

11 In 2010 a follow-up white paper to this one entitled “Agility at Scale” will be published on IBM.com
which will explore in detail how to apply ASM to tailor your agile process to address scaling issues.

