
Agility @ Scale Whitepaper
February 2010

Scaling Agile: An Executive Guide

Scott W. Ambler
Chief Methodologist for Agile, IBM Rational

Executive summary
Agile software development is a highly collaborative, quality-focused approach

to software and systems delivery, which emphasizes potentially shippable

working solutions produced at regular intervals for review and course

correction. Built upon the shoulders of iterative development techniques,

and standing in stark contrast to traditional serial or sequential software

engineering methods, agile software delivery techniques hold such promise

that IBM has begun to adopt agile processes throughout its Software Group,

an organization with over 25,000 developers. But how can practices originally

designed for small teams (10-12) be “scaled up” for significantly larger

operations? The answer is what IBM calls “agility@scale.”

There are two primary aspects of scaling agile techniques that you need to

consider. First is scaling agile techniques at the project level to address the

unique challenges individual project teams face. This is the focus of the Agile

Scaling Model (ASM). Second is scaling your agile strategy across your entire

IT department, as appropriate. It is fairly straightforward to apply agile on a

handful of projects, but it can be very difficult to evolve your organizational

culture and structure to fully adopt the agile way of working.

The Agile Scaling Model (ASM) defines a roadmap for effective adoption and

tailoring of agile strategies to meet the unique challenges faced by a software

and systems delivery team. Teams must first adopt a disciplined delivery

lifecycle that scales mainstream agile construction techniques to address the

full delivery process, from project initiation to deployment into production.

Then teams must determine which scaling factors – team size, geographical

distribution, regulatory compliance, domain complexity, organizational

distribution, technical complexity, organizational complexity, or enterprise

discipline, if any — are applicable to a project team and then tailor their

adopted strategies accordingly to address their specific range of complexities.

When scaling agile strategies across your entire IT organization you must

effectively address five strategic categories — the Five Ps: People, principles,

practices, process, and products (i.e., technology and tooling). Depending

on your organizational environment the level of focus on each area will vary.

What we are finding within many organizations, including IBM, is that the

primary gating factor for scaling agile across your entire organization is your

organization’s ability to absorb change.

 2 Executive Summary

 3 Introduction

 4 Defining agile

 5 Criteria to determine if a team is

agile

 6 Scaling agile strategies at the

project level

11 Scaling agile across your entire IT

department

13 The relationship between Agile and

Lean

15 What improvements should you

realistically expect?

17 Using an accelerated approach

18 What challenges should you

expect?

19 Parting Thoughts

20 Acknowledgements

20 About the Author

Contents

Agility @ Scale Whitepaper
Page 2

Agility @ Scale Whitepaper
Page 3

Highlights
Introduction
Agile software development is an evolutionary, highly collaborative, disciplined,

quality-focused approach to software development and delivery, whereby poten-

tially shippable working software is produced at regular intervals for review

and course correction. Agile software development processes1 include Scrum,

Extreme Programming (XP), Open Unified Process (OpenUP), agile instantia-

tions of Rational Unified Process (RUP), and Agile Modeling (AM), to name a

few. In the IBM Rational organization, we’ve used agile and iterative techniques

internally for many years, and the IBM Global Services and Rational organizations

have been working together to help many of our customers apply these techniques

within their own environments, often under complex conditions at scale. Agile

techniques held such promise that beginning in mid-2006 an explicit program

was put in place to adopt these processes on a wide-scale basis throughout IBM

Software Group, an organization with over 25,000 developers.

Agile software development techniques have taken the industry by storm, with 76%

of organizations reporting in 2009 that they had adopted agile techniques, and that

on average 44% of the project teams within those organizations had adopted one

or more techniques [1]. Agile development is becoming widespread because it

works well – organizations are finding that agile and iterative project teams, when

compared to traditional project teams, enjoy higher success rates, deliver higher

quality, have greater levels of stakeholder satisfaction, provide better return on

investment (ROI), and deliver systems to market sooner [2]. By following quality

techniques such as refactoring and developer regression testing throughout the

lifecycle, agilists are able to progress safely and surely, increasing their productivity.

By working closely with stakeholders in an iterative manner they have a better

understanding of what stakeholders actually need and are more likely to deliver

solutions that people actually want to use for their business purposes. By working

in priority order, agile teams are able to provide the greatest return on investment

as defined by their stakeholders. In short, agile teams work smarter, not harder, and

thereby achieve better results.

As you will learn later in this paper, agile approaches are being used in a wide

range of situations, not just the small, co-located team environments that domi-

nate the early agile literature.2 Agile strategies are being applied throughout the

entire software delivery lifecycle, not just the construction (software coding and

compiling) phase, and very often in very complex environments that require far

more than a small, co-located team armed with a white board or a stack of index

In the IBM Rational organization,

we've used agile and iterativeIn the

IBM Rational organization, we've

used agile and iterative techniques

internally for many years, and the

IBM Global Services and Rational

organizations have been working

together to help many of our

customers apply these techniques

within their own environments.

Agile approaches are being used in a

wide range of situations, not just the

small, co-located team environments

that dominate the early agile literature.

Highlights
cards. Every project team finds itself in a unique situation, with its own goals,

abilities, and challenges. What they have in common is the need to adopt, and

then tailor, agile methods, practices, and tools to address those unique situations.

This paper looks at our experiences gained while applying agile/iterative

strategies and techniques in organizations around the world, often at a

scale far larger than the techniques were pioneered for. It begins with our

definition of what it means to be agile; it summarizes the Agile Scaling

Model (ASM) and explores the scaling factors which your project teams often

face; it provides advice for how to adopt agile strategies across your entire IT

department; and ends with a discussion of the types of benefits which you

may expect to achieve by doing so.

Defining agile
Many people point to the value statements of the Agile Manifesto3 as a

definition for agile development. Although these values are very good

foundational philosophies, they were never really meant to be a definition. In

fact, the agile community has never really settled on a definition nor does it

appear that they will do so any time soon. The Rational organization has its

own description for what we call “disciplined agile delivery”:

Disciplined agile delivery is an evolutionary (iterative and incremental)
approach that regularly produces high-quality solutions in a cost-effective
and timely manner via a risk and value-driven lifecycle. It is performed in
a highly collaborative, disciplined, and self-organizing manner within an
appropriate governance framework, with active stakeholder participation
to ensure that the team understands and addresses the changing needs of its
stakeholders. Disciplined agile delivery teams provide repeatable results by
adopting just the right amount of ceremony for the situation which they face.

Here is a more concise though less robust definition:

Disciplined agile delivery is a highly collaborative, evolutionary, self
organizing, and governed approach that regularly produces high-quality
solutions in a cost-effective and timely manner via a risk and value driven
lifecycle.

I’ll return to the elements of this definition a bit later.

Agility @ Scale Whitepaper
Page 4

Disciplined agile delivery is

performed in a highly collaborative,

disciplined, and self-organizing

manner within an appropriate

governance framework, with active

stakeholder participation.

Highlights
Criteria to determine if a team is agile
A common problem in many organizations is that undisciplined “ad-hoc” teams

often claim to be agile, because they’ve read an article or two about agile devel-

opment, and interpret agility to mean any cool, liberated form of undocumented

software creativity. These ad-hoc teams often run into trouble, and give actual

agile teams a bad name. IBM Rational defines the following five criteria to deter-

mine if a team is truly agile:

1. Working software - Agile teams produce working software on a regular basis,
typically in the context of short, stable, time-boxed iterations.

2. Active stakeholder participation - Agile teams work closely with their stake-

holders, ideally on a daily basis.

3. Regression testing - Agile teams do, at a minimum, continuous developer

regression testing.4 Disciplined agile teams take a Test-Driven Development

(TDD) approach.

4. Organization - Agile teams are self-organizing, and disciplined agile teams

work within an appropriate governance framework at a sustainable pace.

Agile teams are also cross-functional “whole teams,” with enough people with

the appropriate skills to address the goals of the team.

5. Improvement - Agile teams regularly reflect on5, and disciplined teams also

measure, how they work together and then act to improve on their findings

in a timely manner.

An important aspect of these criteria is that they are flexible. Note the terms

used in the description of the criteria – regular basis, closely, continuous, appro-

priately, regularly, timely; they are all situational in nature. For example, for some

teams “regular basis” might be once every week, for other teams in more complex

situations once every six weeks. Because every team finds itself in a unique situ-

ation, they must be flexible in the way that they assess their agility. The real goal

is to be as effective as possible given the situation.

Agility @ Scale Whitepaper
Page 5

Undisciplined "ad-hoc" teams often

run into trouble, and give actual agile

teams a bad name.

Because every team finds itself in a

unique situation, they must be flexible

in the way that they assess their agil-

ity. The real goal is to be as effective

as possible given the situation.

Scaling agile strategies at the project level
The Agile Scaling Model (ASM) [3] is a contextual framework for effective

adoption and tailoring of agile practices to meet the unique challenges faced by

a system delivery team of any size. Figure 1 overviews the ASM, depicting how

the ASM distinguishes between three scaling categories: Core agile development,

disciplined agile delivery, and agility at Scale. IBM Rational advocates disciplined

agile delivery as the minimum that your organization should consider if it wants

to succeed with agile techniques – whether you are on a mainframe team writ-

ing COBOL code for a bank, software running on millions of mobile phones,

or e-commerce code running on the Web, your team should still follow a full

delivery lifecycle in a disciplined manner. You may not be there yet, still in the

learning stages. But our experience is that you will quickly discover how one or

more of the scaling factors is applicable, and as a result need to change the way

you work.

Agility @ Scale Whitepaper
Page 6

Highlights

Fig 1. Overview of the Agile Scaling Model (ASM) 6

Whether you are on a mainframe

team writing COBOL code for a

bank, software running on millions

of mobile phones, or e-commerce

code running on the Web, your team

should still follow a full delivery

lifecycle in a disciplined manner.

The first step in scaling agile approaches is to move from partial methods

to a full-fledged, disciplined agile delivery process. This is a theme echoed

by the Software Engineering Institute (SEI) in their work on applying agile

and Capability Maturity Model Integration (CMMI) together [20]. Main-

stream agile development processes and practices, of which there are many,

have certainly garnered a lot of attention in recent years. They’ve motivated

the IT community to pause and consider new ways of working, and many

organizations have adopted and been successful with them. However, these

mainstream strategies (such as Extreme Programming (XP) or Scrum, which

the ASM refers to as core agile development strategies) are never sufficient on

their own.

To recognize why this is so, compare the Scrum lifecycle of Figure 2 with

the disciplined agile delivery lifecycle [4] of Figure 3. In addition to using

sensible terminology (for example, nobody “sprints” through a 10 kilometer

race), the disciplined agile delivery lifecycle expands upon the Scrum life-

cycle in three important ways:

1. It has explicit project phases, recognizing that agile delivery is really

iterative in the small and serial in the large [5] – Figure 3 explicitly

recognizes that there is additional effort to coordinate teams at incep-

tion and additional effort to package/transition and release the product

to production which the Scrum lifecycle of Figure 2 doesn’t take into

account.

2. It specifies practices as well as the project management framework.

Scrum components/aspects of the project management framework and

leaves practice selection to the teams. Disciplined agile includes ini-

tial requirements and architecture envisioning at the beginning of the

project to increase the chance of building the right product in the right

manner as well as system release practices.

3. It includes more robust practices. The lifecycle of Figure 3 explicitly

reworks the product backlog of Figure 2 into the more accurate con-

cept of a ranked work item list. Not only do delivery teams implement

functional requirements, they must also fix defects (found through

independent testing or by users of existing versions in production), pro-

vide feedback on work from other teams, take training courses, and so

on. Instead of leaving these issues up to the development teams to work

through, disciplined teams start with a strategy which addresses them

from the very beginning.

Agility @ Scale Whitepaper
Page 7

Highlights

The first step in scaling agile

approaches is to move from partial

methods to a full-fledged, disciplined

agile delivery process. Mainstream

strategies (such as Extreme

Programming (XP) or Scrum, which

the ASM refers to as core agile

development strategies) are never

sufficient on their own.

Agility @ Scale Whitepaper
Page 8

Fig 2. Scrum construction lifecycle

Fig 3.Agile system delivery lifecycle

Highlights
Many organizations will develop their own disciplined agile delivery process(es)

by combining Scrum, practices from XP, and (sometimes unknowingly) practices

from other processes such as Agile Modeling. This strategy works, although it can

be expensive and time consuming compared to starting with a full disciplined

agile delivery process. Many teams I’ve worked with would have greatly benefited

by starting with an existing, more disciplined process such as the Open Unified

Process (OpenUP), Dynamic System Development Method (DSDM), or the Eclipse

Way, all widely available methodologies for team-based software delivery.

The second step to scaling agile is to assess the degree of complexity your team

faces. In the early days, projects managed via agile techniques were small in

scope and relatively straightforward. Small, co-located teams using mainstream

processes still get the job done in these situations. Today, the picture has changed

significantly, and larger organizations want to apply agile development to a broader

set of projects. They require large teams; they want to leverage a distributed work

force; they want to partner with other organizations; they need to comply with

regulations and industry standards; they have significant technical or cultural

environmental issues to overcome; and they want to go beyond the single-system

mindset and truly consider cross-system enterprise issues effectively. Not every

project team faces all of these scaling factors to the same extent, but these are the

primary factors that add complexity to your situation. That’s why your disciplined

agile delivery process needs to adapt.

In addition to scaling your lifecycle to address the full range of needs for solu-

tion delivery, there are eight more scaling factors that may be applicable, as

shown in Figure 4. Each factor represents a range of possibilities, from simple to

complex. For each factor the simplest situation is on the left-hand side and the

most complex situation on the right-hand side. When a project team finds that all

eight factors are close to the left (simple), then their project can be managed in a

disciplined agile delivery mode. But when one or more scaling factors moves to

the right, they are in an agility at scale situation. To address these scaling factors

you will need to tailor your disciplined agile delivery practices and in some situa-

tions adopt a handful of new practices to address the additional risks that you face

at scale.

Agility @ Scale Whitepaper
Page 9

In the early days, projects managed

via agile techniques were small in

scope and relatively straightforward.

Today, the picture has changed

significantly, and larger organizations

want to apply agile development to a

broader set of projects.

Agility @ Scale Whitepaper
Page 10

Fig 4.Potential scaling factors for disciplined agile delivery

Within the range of complexities shown in Figure 4, teams will need to tailor

practices and tools to reflect their situation. The first four scaling factors

listed – team size, geographical distribution, regulatory compliance, and

organizational distribution – are relatively straightforward to address via dis-

ciplined work, adoption of appropriate technology, and tailoring of practices

to reflect the realities of each scaling factor. The other four scaling factors

– domain complexity, technical complexity, organizational complexity, and

enterprise discipline – are more difficult to address because environmental

complexity often reflects systemic challenges within your organization and

enterprise discipline requires a level of maturity that many organizations

struggle to achieve (although most desire such discipline).

Highlights
Scaling agile across your entire IT department
While it may be tempting to begin adopting agile techniques via a small pilot

project or two, Walker Royce, Chief Software Economist at IBM Rational

offers a bold suggestion: The best way to ensure success is to assign a crack
team with a mission critical project using agile/iterative techniques. Perhaps

this explains much of the success of disciplined agile teams. However, suc-

cessful process improvement across all or most of an IT entire organization

can prove difficult in practice, often because casting a wider net draws a

wider range of challenges.7

I’ve found that to be successful scaling agile techniques across your entire IT

department that you must address five areas, what I call the “5 Ps” of IT: people,

principles, practices, products, and processes.8 Here they are, in order of impor-

tance:

1. People - People and the way they work together have a greater effect on the

outcomes of a project than the processes they’re following or the products

(tools and technologies) that they’re using.

2. Principles - An effective set of principles, some organizations use the term

philosophies, provides a foundation to help you keep things together even

when the environment is shifting underneath you.

3. Practices- A practice is a self-contained, deployable component of a process

[14]. Examples of agile practices include test-driven development (TDD),

daily stand-up meetings, requirements envisioning, database refactoring,

continuous integration, shared vision, and user-story driven development

to name a few. The prevailing strategy within the agile community is for

project teams to adopt and then tailor these small, cohesive practices to meet

the unique needs which their project team finds themselves in.

4. Products - The IBM Jazz platform (www.jazz.net) provides a tailorable tooling

eco-system which reflects the realities of agility at scale. Although simple,

point-specific products work well in the straightforward situations faced by

disciplined agile delivery teams, such teams working at scale quickly find

that they need integrated tools which support collaboration and which are

instrumented to support automated reporting (to support appropriate govern-

ance).

5. Processes - The previous 4Ps do not exist in a vacuum, we need some sort

of glue to help piece all of this together. Minimally this glue is a lifecycle,

such as the one in Figure 3, although more often than not it is a process or

method.

Agility @ Scale Whitepaper
Page 11

While it may be tempting to begin

adopting agile techniques via a small

pilot project or two, the best way to

ensure success is to assign a crack

team with a mission critical project

using agile/iterative techniques.

I’ve found that to be successful scal-

ing agile techniques across your

entire IT department that you must

address five areas, what I call the “5

Ps” of IT: people, principles, practices,

products, and processes.

Agility @ Scale Whitepaper
Page 12

Understanding the five Ps of IT, and being prepared to address them is a good

start, but note that any medium to large organization is doing many things in

parallel, making planning and coordination difficult. IBM Rational takes a meas-

ured improvement approach to help organizations improve their system delivery

effectiveness. This strategy typically includes an initial “health check” assessment

called which helps you to navigate and select the right subset of practices, define

your current capability (an “as-is” measure), a target capability improvement

(a “to-be” measure), and a roadmap for you to get from where you are today to

your target improvement with measurable feedback all along the route. We then

help the organization make the appropriate improvements by leveraging training

materials, process definitions, and tooling guidance, all of which can be tailored

to the unique needs of an organization to give them a head start on their process

improvement efforts. The measured improvement approach is intended to resolve

the two predominant failure patterns of past process improvement initiatives,

either self-inflicting too much process (rather than a subset of incremental prac-

tices) or employing subjective rather than objective measures of progress.

You must also explicitly manage your process improvement efforts. It’s fairly easy

to succeed at a handful of pilot projects; it’s a bit more difficult to permanently

adopt meaningful process improvements across your IT organization. A common

strategy is for a team to regularly reflect on their approach to identify potential

improvements, and then hopefully act on those improvements. Within IBM, we’ve

found that teams who explicitly track their progress at adopting improvements

are more successful than those who don’t. We’ve developed tooling called IBM

Rational SelfCheck which helps teams do exactly this [15]. Reflections/retrospec-

tives at the team level work well in practice, but you need more at the IT depart-

ment level. You also need a funded, continuous improvement program across your

delivery organization that leverages a mix of iteration reflections and practitioner

input to constantly improve your baseline agile delivery process. Without that,

agile teams in various lines of business may re-invent the wheel and go through

unnecessary pain.

Highlights

We help the organization make

the appropriate improvements by

leveraging training materials, process

definitions, and tooling guidance, all

of which can be tailored to the unique

needs of an organization to give

them a head start on their process

improvement efforts.

Within IBM, we’ve found that teams

who explicitly track their progress at

adopting improvements are more suc-

cessful than those who don’t.

Highlights
The relationship between Agile and Lean
As I discussed earlier, you want to adopt a set of principles that reflect your

unique situation to provide a guiding foundation for your delivery efforts. Many

organizations are starting with lean principles to provide such guidance. In

Implementing Lean Software Development [10], Mary and Tom Poppendieck

show how the seven principles of Lean Manufacturing can be applied to optimize

the whole IT value stream. These principles are:

1. Eliminate waste - Lean thinking advocates regard any activity that does

not directly add value to the finished product as waste. The three biggest

sources of waste in software development are the addition of unrequired

features, project churn and crossing organizational boundaries (particularly

between stakeholders and development teams). To reduce waste it is critical

that development teams be allowed to self organize and operate in a manner

that reflects the work they’re trying to accomplish. Walker Royce argues in

“Improving Software Economics” [21] that the primary benefit of modern

iterative/agile techniques is the reduction of scrap and rework late in the

lifecycle.

2. Build in quality - Your process should not allow defects to occur in the first

place, but when this isn’t possible you should work in such a way that you

do a bit of work, validate it, fix any issues that you find, and then iterate.

Inspecting after the fact, and queuing up defects to be fixed at some time

in the future, isn’t as effective. Agile practices which build quality into your

process include test driven development (TDD) and non-solo development

practices such as pair programming and modeling with others.

3. Create knowledge- Planning is useful, but learning is essential. You want to

promote strategies, such as iterative development, that help teams discover

what stakeholders really want and act on that knowledge. It’s also important

for a team to regularly reflect on what they’re doing and then act to improve

their approach.

4. Defer commitment - It’s not necessary to start software development by defin-

ing a complete specification, and in fact that appears to be a questionable

strategy at best [11]. You can support the business effectively through flexible

architectures that are change tolerant and by scheduling irreversible deci-

sions to the last possible moment. Frequently, deferring commitment requires

the ability to closely couple end-to-end business scenarios to capabilities

developed in multiple applications by multiple projects.

Agility @ Scale Whitepaper
Page 13

Many organizations are starting with

lean principles to provide a guiding

foundation for delivery efforts.

Highlights

5. Deliver quickly - It is possible to deliver high-quality systems quickly. By

limiting the work of a team to its capacity, which is reflected by the team’s

velocity,9 you can establish a reliable and repeatable flow of work. An effec-

tive organization doesn’t demand teams do more than they are capable of, but

instead asks them to self-organize and determine what they can accomplish.

Constraining these teams to delivering potentially shippable solutions on a

regular basis motivates them to stay focused on continuously adding value.

6. Respect people - The Poppendiecks also observe that sustainable advantage

is gained from engaged, thinking people. The implication is that you need a

governance strategy that focuses on motivating and enabling IT teams—not

on controlling them [12].

7. Optimize the whole - If you want to be effective at a solution you must look at

the bigger picture. You need to understand the high-level business processes

that individual projects support—processes that often cross multiple systems.

You need to manage programs of interrelated systems so you can deliver a

complete product to your stakeholders. Measurements should address how

well you’re delivering business value, because that is the sole reason for your

IT department.

Lean thinking is important to agility in several ways. First, lean provides an

explanation for why many of the agile practices work. For example, Agile Mod-

eling’s practices of light weight, initial requirements envisioning followed by itera-

tion modeling and just-in-time (JIT) model storming work because they reflect

deferment of commitment regarding what needs to be built until it’s actually

needed, and the practices help eliminate waste because you’re only modeling what

needs to be built. Second, these principles offer insight into strategies for improv-

ing your software process. For example, by understanding the source of waste in

IT you can begin to identify it and then eliminate it. Third, these principles pro-

vide a philosophical foundation for scaling agile approaches. Fourth, value stream

mapping – a technique common within the lean community whereby you model

a process and then identify how much time is spent on value-added work versus

wait time – helps calculate overall time efficiency of what you’re doing. Value

stream maps are a straightforward way to illuminate your IT processes, providing

insight into where significant problems exist.10

Agility @ Scale Whitepaper
Page 14

Agile Modeling's practices of

light weight, initial requirements

envisioning followed by iteration

modeling and just-in-time (JIT) model

storming work because they reflect

deferment of commitment regarding

what needs to be built until it's

actually needed.

Highlights
What improvements should you realistically expect?
I am often asked what kind of benefits to expect from adopting agile approaches.

While the surveys11 I have conducted over the years consistently show that agile

and iterative approaches provide better quality, greater stakeholder satisfaction,

better return on investment, and better time to value than traditional techniques,

[2] I am invariably asked: “How much better?” and “How much will we ben-

efit?” As you may suspect, I can’t provide exact answers to these questions, but

I can provide a framework for understanding the potential benefits of adopting

agile across your IT organization.

You’ve probably heard some “wild claims” in agile case studies of productivity

improvements of 50%, 75%, 100%, and sometimes more. If in your organization

you see lower productivity improvements than this, don’t worry; this doesn’t sug-

gest failure. Although I have no doubt that many of these claims are reasonably

correct (I myself have seen some impressive improvements at organizations that

I’ve work with), it is best for teams actually involved with the details of project

progress to measure key improvement factors and not simply rely on gut feel (and

not rely on outside consultants hired to achieve the benefits!).

Both IBM Rational and the Accelerated Solution Delivery Practice12 within IBM

Global Services have been helping organizations improve their internal IT proc-

esses for years, in particular based on iterative and/or agile strategies. Depend-

ing on the situation which the client finds itself in, we may recommend either

a continuous process improvement strategy, which IBM Rational focuses on; an

accelerated improvement strategy, which the ASD practice focuses on; or a com-

bination of both approaches as part of a broader initiative. First, with the continu-

ous strategy you adopt a few techniques at a time, absorb them, learn from your

experiences, and then iterate. Table 2 summarizes what we believe to be realistic

expectations by taking this approach, based on our actual experiences helping our

customers.

Agility @ Scale Whitepaper
Page 15

It is best for teams actually involved

with the details of project progress

to measure key improvement factors

and not simply rely on gut feel (and

not rely on outside consultants hired

to achieve the benefits!)

Agility @ Scale Whitepaper
Page 16

Success Criteria Year 1 Year 2 Year 3

Quality 3-5% fewer

defects

3-5% fewer

defects

3-5% fewer

defects

Labor costs 2-3% improvement 4-5%

improvement

4-5%

improvement

Time to Value 5% faster 10% faster 5% faster

Delivered Fiunctionality 5% improved

accuracy

5% improved

accuracy

5% improved

accuracy

Table 2. Realistic improvements when adopting agile widely

There are several important points that I need to make about the numbers shown

in Table 2:

1. They are for large-scale agile adoption across most or all of an IT organiza-

tion. Not everyone is going to be the highly skilled, highly motivated people

you put on your pilot projects.

2. They are very conservative, as I’m a firm believer in under promising and

over delivering. We’ve had several customers who have done much better

than this using an aggressive adoption approach which received significant

support from all aspects of the organization. So, as the agile community likes

to say, “your mileage may vary” (YMMV).

3. The results are for year on year. For example, you should hopefully see a

3-to-5% improvement in quality the first year, another 3-to-5% improvement

the next year, and so on. The most last process improvement occurs gradu-

ally over time, in small increments, a Japanese concept called kaizen.

The primary determinant of success is your leadership. Whatever your current

situation, you need to choose to make the often difficult changes that enable your

organization to improve. Change is uncomfortable, the implication being that

not everyone is going to be happy with moving to agile. You will not achieve even

these conservative benefits unless you’re willing to make them happen. Further-

more, you will need to parameterize and measure the impact of the changes. As

the process change moves forward, one of the keys will be the ability to prove

“that the gain is worth the pain.”

Highlights

The primary determinant of success

is your leadership. Whatever your

current situation, you need to choose

to make the often difficult changes

that enable your organization to

improve.

—

Agility @ Scale Whitepaper
Page 17

Table 3 presents a complementary view to Table 2 by examining four potential

improvement strategies (which could be combined). As with Table 2, the figures

in Table 3 reflect the experiences of IBM Rational consultants helping organiza-

tions to improve their approach to IT [21]. Improving automation, collaboration,

and improving your process are all relatively short term endeavors with modest,

although not unsubstantial, potential for productivity increase. The strategy with

greatest potential — increasing the flexibility in your approach to IT and the

way in which you make IT investments — has the greatest cultural impact on

your organization because it often requires a paradigm shift in how the business

perceives IT.

Table 3. Comparing potential improvement strategies

Improvement

Strategy

Cost to

implement

Potential

Improvement

Timeframe Cultural

Impact

Improve Automation <5% 5-25% Weeks Very Low

Improve

Collaboration

5-10% 15-35% Months Low

Improve Process 10-35% 25-100% Quarters Some

Increase Flexibility

and Investment

Value

25-50% 2x-10x Years High

Using an accelerated approach
The ASD practice has been delivering a mix of rapid/agile/lean development

services with clients for over ten years, including high-performance agile delivery

centers, turn-key project delivery, and assessments of troubled client implementa-

tions. They’ve frequently used an accelerated approach, where you adopt a larger

number of agile practices at once and support this adoption by bringing mentors

to help guide agile delivery and transfer skills to the staff. This leads to much

higher productivity improvements, but it requires you to partner closely with the

ASD mentors at all levels within your organization and commit to a more aggres-

sive accelerated program – in other words, there’s quicker gain from greater focus.

Their analysis over hundreds of agile projects that they’ve been involved with is

that the more agile techniques you use, the better the aggregate results.

Highlights

The strategy with greatest potential

— increasing the flexibility in your

approach to IT and the way in which

you make IT investments — has the

greatest cultural impact on your

organization because it often requires

a paradigm shift in how the business

perceives IT.

—

IBM Rational and the ASD practice have been working together to optimize our

collective assets, and jointly engage where the client desires a mix of practice

improvement, tooling and want to take a more aggressive approach to optimiza-

tion.

Table 2 addresses the factors which you may want to consider when calculat-

ing productivity. If your organization supports a domain where delivery time is

paramount, then your calculation of productivity improvement would be highly

weighted towards the time-to-value statistics and your process improvement

efforts would be similarly skewed towards techniques for reducing overall delivery

time. If all of these factors are equally important, then your productivity improve-

ment in the first year could potentially be 19% 13 – we’ve seen more than double

this on pilot projects, for the reasons discussed earlier, although across an entire

IT department the average seems to be 6 to 8% per annum. The critical observa-

tion is that the way you calculate productivity improvement is situational.

Part of being a leader is that sometimes you need to take a leap of faith that your

vision — in this case, your move to adopt the scaling of agile techniques across

your IT department — is a good one. There are no easy fixes, no “silver bullets”

to slay the IT productivity werewolf, regardless of what some of the agile market-

ers may imply. Slow and steady wins the process improvement race.

What challenges should you expect?
As I discussed earlier, the adoption of agile approaches within most organiza-

tions, including IBM, typically begins with a grass roots movement. The people

involved self select themselves, they’re often highly motivated to try new things

and learn from their experiences, and more often than not they’re often amongst

your most highly skilled people. Then, when you “officially” start supporting

agile adoption you often choose straightforward pilot projects, put together teams

of these motivated and skilled people, and give them the support that they need

to succeed. And succeed they do. But soon the situation changes. Suddenly, the

projects aren’t so straightforward, and you’re trying to roll out agile approaches to

people who may not be highly skilled or motivated to change.

Our experience is that changing your organizational culture is the primary

challenge when adopting agile techniques at scale [17], just like it’s the primary

challenge with other type of process improvements. The difficulty is your organi-

Agility @ Scale Whitepaper
Page 18

Look at What’s Changing: A Lesson

from Physics

The best indicators in software are

measurements of what’s changing. For

example, an easy way to determine the

productivity improvement of an agile

team is to calculate its acceleration,

the change in its velocity over time

[16]. Agile teams already calculate

their velocity, the number of points of

functionality that they can deliver each

iteration, for estimation and planning

purposes, and acceleration is simple

calculation based on that information.

Acceleration doesn’t tell you the exact

levels of productivity, something that

is expensive to calculate, but it is a

virtually free estimate of the change in

productivity. Better yet, the acceleration

across your entire department can be

easily calculated as a weighted average

and then monetized by multiplying the

number of people involved by their fully

burdened cost.

Highlights

Agility @ Scale Whitepaper
Page 19

zational culture reflects the people, your organizational goals, the way that people

are organized, and the ways that they prefer to work – all of these issues are

near and dear to the hearts of the people involved. A common refrain heard

from groups that prefer the status quo is “Yes, agile is wonderful, but to allow

us to address X they must still continue to produce Y just like other teams.” For

example, the quality assurance group may still want to be responsible for compre-

hensive testing at the end of the lifecycle and therefore require a detailed require-

ment speculation [18], not realizing that agile delivery teams do much of the

testing themselves much earlier in the project. Or the data management group

may insist that they produce a detailed logical data model and physical data model

during the analysis and design phases of the agile project to ensure that corporate

standards are followed and existing data sources leveraged appropriately, not real-

izing that analysis and design are so important to agile teams that they do these

activities all the way through the lifecycle — in an evolutionary manner — and

would rather have someone knowledgeable about data issues involved throughout

the entire project as an agile team member. These requests are not unreason-

able; clearly your traditional teams have performed this way for years. But on the

agile landscape, these methods can hamper a team’s ability to actually achieve the

promised benefits. Instead of giving in to these requests, in other words taking

the easy road to mediocrity, you must instead choose the “hard road” and work

with those tradionally minded teams to help them also become agile. It will be

better for everyone involved in the long run.

Parting thoughts
Although many organizations have succeeded with agile approaches to system

delivery, that doesn’t make agile a silver bullet with which you can easily slay the

IT productivity lycanthrope. I have described how to scale agile approaches on

two fronts: for individual project teams and for adopting it across your IT organi-

zation. To succeed at scaling agile for project teams you must first recognize the

need to apply agile throughout the entire delivery lifecycle, not just construction.

Then, depending on the situation that the team finds itself in, you may need to

tailor the agile practices which you have adopted for applicable scaling factors

– team size, geographical distribution, regulatory compliance, domain complex-

ity, organizational distribution, technical complexity, organizational complexity,

or enterprise discipline. Disciplined agile teams focus on producing repeatable

results, not on the bureaucratic façade of following repeatable practices. To suc-

ceed at scaling agile strategies across your IT organization you must address the

following five areas: People, principles, practices, process, and products (technol-

ogy and tooling).

Highlights

Clearly your traditional teams have

performed for years. But on the agile

landscape, traditional methods can

hamper a team's ability to actually

achieve the promised benefits.

Agility @ Scale Whitepaper
Page 20

Nobody gets a gold star for being agile; the goal is to get better, not to become

agile. Considering that the focus of this paper, I realize this sounds contradictory.

But if your team can succeed with agile techniques, you will certainly become

more effective at software and systems delivery.

Acknowledgements
I’d like to thank Alan W. Brown, Paul Gorans, David Lubanko, Mike Perrow,

Walker Royce, Rick Weaver, and Elizabeth Woodward for their feedback,

which was incorporated into this white paper.

About the Author
Scott W. Ambler is Chief Methodologist/Agile with IBM Rational and he

works with IBM customers around the world to improve their software pro-

cesses. He is the founder of the Agile Modeling (AM), Agile Data (AD), Agile

Unified Process (AUP), and Enterprise Unified Process (EUP) methodologies.

Scott is the (co-)author of 19 books, including Refactoring Databases, Agile

Modeling, Agile Database Techniques, The Object Primer 3rd Edition, and

The Enterprise Unified Process. Scott is a senior contributing editor with

Information Week. His personal home page is www.ibm.com/software/ratio-

nal/leadership/leaders/#scott and his Agile at Scale blog is www.ibm.com/

developerworks/blogs/page/ambler.

Highlights

Agility @ Scale Whitepaper
Page 21

Endnotes

1 Throughout this paper the term process shall also include the terms “method” and “methodology.”
These terms are used interchangeably within the IT industry and for the sake of simplicity I have chosen
to use the term “process.”

2 This difference is discussed in, for example, Stober, T. and Hansmann, W. (2010). Agile Software
Development: Best Practices for Large Software Development Projects. New York: Springer Publishing,
and in Larman, C. and Vodde, B. (2009). Scaling Lean & Agile Development: Thinking and Organiza-
tional Tools for Large-Scale Scrum. Upper Saddle River, NJ: Addison Wesley.

3 For a more detailed discussion of the Agile Manifesto, see “Examining the Agile Manifesto” at www.
ambysoft.com/essays/agileManifesto.html

4 Regression testing, essentially, tests whether changes to existing software have introduced new
problems.

5 A common strategy to do so via retrospectives, see www.retrospectives.com

6 The ASM is described in detail in the white paper “The Agile Scaling Model (ASM): Adapting Agile
Methods for Complex Environments” which can be downloaded at ftp://ftp.software.ibm.com/common/
ssi/sa/wh/n/raw14204usen/RAW14204USEN.PDF

7 My follow-up whitepaper to this one, entitled “Agility@Scale: Disciplined Strategies for Scaling Agile
Delivery”, will go into the details of scaling across your organization and tailoring agile practices to
reflect the realities of various scaling factors. It will be available in the first quarter of 2010 at www.ibm.
com

8 This shouldn’t be confused with the 5Ps of marketing: product, price, place, promotion, and people.

9 This is the number of “points” of functionality which a team delivers each iteration.

10 I’ve created value stream maps with several customers around the world where we analyzed their
existing processes which some of their more traditional staff believed worked well only to discover they
had efficiency ratings of 20-30%. You can’t fix problems which you are blind to.

11 My surveys are performed in a completely open manner. The original questions as they were asked,
the source data (without identifying information), and summary slide decks are available free of charge
from www.ambysoft.com/surveys/ so that you can analyze the results for yourself.

12 See http://www.ibm.com/services/us/index.wss/offering/gbs/a1029597

13 Calculated as 1.05*1.03*1.05*1.05. This assumes that you focus on all four success criteria and that
they are all weighted equally as important in your organization.

© Copyright IBM Corporation 2010

IBM Corporation

Software Group

Route 100

Somers, NY 10589

U.S.A.

Produced in the United States of America

March 2010

All Rights Reserved

IBM, the IBM logo, ibm.com and Rational are

trademarks or registered trademarks of International

Business Machines Corporation in the United States,

other countries, or both. Other company, product, or

service names may be trademarks of IBM or other

companies.

A current list of IBM trademarks is available on the

Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml

The information contained in this document is

provided for informational purposes only. While

efforts were made to verify the completeness

and accuracy of the information contained in this

documentation, it is provided “as is” without warranty

of any kind, express or implied.

RAW14211-USEN-00

References

1. Dr. Dobb’s Journal’s July 2009 State of the IT Union Survey - www.ambysoft.com/surveys/stateOfI-
TUnion200907.html

2. Dr. Dobb’s Journal’s 2008 Project Success Survey - www.ambysoft.com/surveys/success2008.html
3. Ambler, S.W. (2009). The Agile Scaling Model (ASM): Adapting Agile Methods for Complex Envi-

ronments - ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14204usen/RAW14204USEN.PDF
4. Ambler, S.W. (2005). The Agile System Development Life Cycle (SDLC) - www.ambysoft.com/

essays/agileLifecycle.html
5. Ambler, S.W. (2004). The Object Primer 3rd Edition: Agile Model Driven Development with UML

2.0. New York: Cambridge University Press.
6. Kruchten, P. (2009). The context of software development. pkruchten.wordpress.com/2009/07/22/

the-context-of-software-development/
7. Dr. Dobb’s Journal November 2009 State of the IT Union Survey. www.ambysoft.com/surveys/state-

OfITUnion200911.html
8. Ambler, S.W. (2004). Agile Database Techniques: Effective Strategies for the Agile Development.

New York: Wiley Publishing.
9. Ambler, S.W., Nalbone, J., and Vizdos, M. (2004). The Enterprise Unified Process: Enhancing the

Rational Unified Process. Boston: Addison Wesley.
10. Poppendieck, M. and Poppendieck, T. (2006). Implementing Lean Software Development: From

Concept to Cash. Boston: Addison Wesley.
11. Ambler, S.W. (2003). Examining the “Big Requirements Up Front (BRUF) Approach”. www.agilem-

odeling.com/essays/examiningBRUF.htm
12. Ambler, S.W. & Kroll, P. (2007). Lean Development Governance. www.software.ibm.com/webapp/

iwm/web/preLogin.do?lang=en_US&source=swg-ldg
13. Agile Manifesto, www.agilemanifesto.org
14. IBM Practices home page. www.ibm.com/developerworks/rational/practices/index.html
15. Kroll, P. and Krebs, W. (2008). Introducing IBM Rational Self Check for Software Teams.

www.ibm.com/developerworks/rational/library/edge/08/may08/kroll_krebs/index.html
16. Ambler, S.W. (2009). Examining Acceleration. https://www.ibm.com/developerworks/mydeveloper-

works/blogs/ambler/entry/metric_acceleration_examined
17. Ambler, S.W. (2009). Not Agile Yet? Exploring the Excuses. www.ddj.com/architect/222002704
18. Ambler, S.W. (2009). The Danger of Detailed Speculations. https://www.ibm.com/developerworks/

mydeveloperworks/blogs/ambler/entry/detailed_speculations
19. Measured Capability Improvement Framework Home Page. www.ibm.com/software/rational/mcif/
20. Glazer, H., Dalton, J., Anderson, D.J., Konrad, M.D., and Shrum, S. (2008). CMMI or Agile: Why Not

Embrace Both! www.sei.cmu.edu/reports/08tn003.pdf
21. Royce, W. (2009). “Improving Software Economics: Top 10 Principles of Achieving Agility at

Scale.” download.boulder.ibm.com/ibmdl/pub/software/rational/web/whitepapers/Royce_Soft-
wareEconomics_whitepaper3.pdf

